基于侧链功能化的柠檬烯聚酰胺高精度调谐

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Magdalena M. Kleybolte, Christopher P. Vogt, Malte Winnacker
{"title":"基于侧链功能化的柠檬烯聚酰胺高精度调谐","authors":"Magdalena M. Kleybolte,&nbsp;Christopher P. Vogt,&nbsp;Malte Winnacker","doi":"10.1002/macp.202500021","DOIUrl":null,"url":null,"abstract":"<p>Despite the success of conventional nylons in biomedicine, there is a growing demand for specialized materials tailored to modern needs. Tunable and sustainable bio-polyamides (PAs) derived from terpenes offer a promising alternative. This work focuses on limonene polyamide (<b>LiPA</b>) synthesized via anionic ring-opening polymerization (AROP) from limonene lactam and its functionalization via <i>a</i> thiol-ene click reaction. Optimizing the AROP enables the preparation of high molecular weight <b>LiPA</b> up to 54 kg mol<sup>−1</sup>, rendering the material attractive for further utilization. Subsequent exploration of the side-chain functionalization via thiol-ene click chemistry allows for the introduction of diverse functional groups (e.g., alkyl, ester, sulfonate) and finetuning of the polymers’ properties. The modifications give control over solubility, processability, hydrophilicity, and glass transition temperature (44–133 °C). While alkyl groups increase hydrophobicity, all PAs display hydrophilic surfaces (<i>q</i> &lt; 90°). Notably, the sulfonate-modified <b>LiPA</b> shows amphiphilic behavior, forming micelles in an aqueous solution, demonstrating potential for drug delivery applications. The high tolerance of the thiol-ene reaction towards various functional groups enables future incorporation of bioactive moieties, like cell-binding motifs for tissue engineering. In summary, this investigation demonstrates the tunability of <b>LiPA</b>’s properties through strategic side-chain modifications, paving the way for diverse biomedical applications.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Precision Tuning of Limonene Polyamide via Side-Chain Functionalization for Specialized Applications\",\"authors\":\"Magdalena M. Kleybolte,&nbsp;Christopher P. Vogt,&nbsp;Malte Winnacker\",\"doi\":\"10.1002/macp.202500021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the success of conventional nylons in biomedicine, there is a growing demand for specialized materials tailored to modern needs. Tunable and sustainable bio-polyamides (PAs) derived from terpenes offer a promising alternative. This work focuses on limonene polyamide (<b>LiPA</b>) synthesized via anionic ring-opening polymerization (AROP) from limonene lactam and its functionalization via <i>a</i> thiol-ene click reaction. Optimizing the AROP enables the preparation of high molecular weight <b>LiPA</b> up to 54 kg mol<sup>−1</sup>, rendering the material attractive for further utilization. Subsequent exploration of the side-chain functionalization via thiol-ene click chemistry allows for the introduction of diverse functional groups (e.g., alkyl, ester, sulfonate) and finetuning of the polymers’ properties. The modifications give control over solubility, processability, hydrophilicity, and glass transition temperature (44–133 °C). While alkyl groups increase hydrophobicity, all PAs display hydrophilic surfaces (<i>q</i> &lt; 90°). Notably, the sulfonate-modified <b>LiPA</b> shows amphiphilic behavior, forming micelles in an aqueous solution, demonstrating potential for drug delivery applications. The high tolerance of the thiol-ene reaction towards various functional groups enables future incorporation of bioactive moieties, like cell-binding motifs for tissue engineering. In summary, this investigation demonstrates the tunability of <b>LiPA</b>’s properties through strategic side-chain modifications, paving the way for diverse biomedical applications.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202500021\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202500021","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

尽管传统尼龙在生物医学上取得了成功,但对适应现代需求的特殊材料的需求不断增长。从萜烯中提取的可调和可持续的生物聚酰胺(PAs)提供了一个有前途的替代方案。本文研究了以柠檬烯内酰胺为原料,通过阴离子开环聚合(AROP)合成柠檬烯聚酰胺(LiPA),并通过巯基咔嗒反应实现其功能化。优化AROP可以制备高分子量的LiPA,高达54 kg mol−1,使材料具有进一步利用的吸引力。随后通过巯基点击化学对侧链功能化的探索允许引入不同的官能团(例如,烷基、酯、磺酸)并微调聚合物的性质。这些修饰可以控制溶解度、加工性、亲水性和玻璃化转变温度(44-133℃)。虽然烷基增加了疏水性,但所有PAs都显示亲水性表面(q <;90°)。值得注意的是,磺酸盐修饰的LiPA表现出两亲性行为,在水溶液中形成胶束,显示出药物输送应用的潜力。巯基反应对各种官能团的高耐受性使未来能够结合生物活性部分,如组织工程中的细胞结合基序。总之,本研究通过侧链修饰证明了LiPA特性的可调性,为多种生物医学应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Precision Tuning of Limonene Polyamide via Side-Chain Functionalization for Specialized Applications

High Precision Tuning of Limonene Polyamide via Side-Chain Functionalization for Specialized Applications

Despite the success of conventional nylons in biomedicine, there is a growing demand for specialized materials tailored to modern needs. Tunable and sustainable bio-polyamides (PAs) derived from terpenes offer a promising alternative. This work focuses on limonene polyamide (LiPA) synthesized via anionic ring-opening polymerization (AROP) from limonene lactam and its functionalization via a thiol-ene click reaction. Optimizing the AROP enables the preparation of high molecular weight LiPA up to 54 kg mol−1, rendering the material attractive for further utilization. Subsequent exploration of the side-chain functionalization via thiol-ene click chemistry allows for the introduction of diverse functional groups (e.g., alkyl, ester, sulfonate) and finetuning of the polymers’ properties. The modifications give control over solubility, processability, hydrophilicity, and glass transition temperature (44–133 °C). While alkyl groups increase hydrophobicity, all PAs display hydrophilic surfaces (q < 90°). Notably, the sulfonate-modified LiPA shows amphiphilic behavior, forming micelles in an aqueous solution, demonstrating potential for drug delivery applications. The high tolerance of the thiol-ene reaction towards various functional groups enables future incorporation of bioactive moieties, like cell-binding motifs for tissue engineering. In summary, this investigation demonstrates the tunability of LiPA’s properties through strategic side-chain modifications, paving the way for diverse biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信