超短脉冲激光辅助3D打印生物复合材料直接修复人类牙釉质

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sarathkumar Loganathan, Geeta Sharma, Evangelos Daskalakis, Simon Strafford, Eric Kumi Barimah, Animesh Jha
{"title":"超短脉冲激光辅助3D打印生物复合材料直接修复人类牙釉质","authors":"Sarathkumar Loganathan,&nbsp;Geeta Sharma,&nbsp;Evangelos Daskalakis,&nbsp;Simon Strafford,&nbsp;Eric Kumi Barimah,&nbsp;Animesh Jha","doi":"10.1002/admt.202401362","DOIUrl":null,"url":null,"abstract":"<p>Restorative dentistry encounters the prevalence of secondary caries due to the formation of marginal defects during tooth restoration. The present study proposes a dual-wavelength ultrashort-pulsed laser system for the direct restoration of damaged enamel to overcome marginal defects. The 2D finite element (FE) laser-ablative model is developed for studying the laser-tissue interaction. The laser-ablated cavities (rectilinear and circular) are prepared on human enamel using 800 nm, Ti:Sapphire femtosecond (fs) laser (100 fs, 1 kHz, 1 mm s<sup>−1</sup>) at average laser power of 200 mW. Subsequently, the cavity is filled with 3D printed biocomposite (65 wt.% of 3D-printing resin and 35 wt.% of Ce<sup>3+</sup>-ion doped hydroxyapatite) and photocured using 405 nm laser. Further, the postprocessing procedure is carried out using fs laser to remove excessive filler materials and improve surface finish at sub-ablation threshold of enamel. The surface morphology, chemical compositions, mechanical and interfacial properties of restored enamel surface are evaluated. The in vitro evaluation study confirmed that the enamel restored with fs laser and 3D printing biocomposite is mechanically and chemically robust for withstanding oral challenges. The proposed method of restoring damaged enamel opens an opportunity for a range of precision restorative dentistry procedures including caries and tooth augmentation.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202401362","citationCount":"0","resultStr":"{\"title\":\"Ultrashort Pulsed Laser-Assisted Direct Restoration of Human Enamel Using 3D Printable Biocomposite\",\"authors\":\"Sarathkumar Loganathan,&nbsp;Geeta Sharma,&nbsp;Evangelos Daskalakis,&nbsp;Simon Strafford,&nbsp;Eric Kumi Barimah,&nbsp;Animesh Jha\",\"doi\":\"10.1002/admt.202401362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Restorative dentistry encounters the prevalence of secondary caries due to the formation of marginal defects during tooth restoration. The present study proposes a dual-wavelength ultrashort-pulsed laser system for the direct restoration of damaged enamel to overcome marginal defects. The 2D finite element (FE) laser-ablative model is developed for studying the laser-tissue interaction. The laser-ablated cavities (rectilinear and circular) are prepared on human enamel using 800 nm, Ti:Sapphire femtosecond (fs) laser (100 fs, 1 kHz, 1 mm s<sup>−1</sup>) at average laser power of 200 mW. Subsequently, the cavity is filled with 3D printed biocomposite (65 wt.% of 3D-printing resin and 35 wt.% of Ce<sup>3+</sup>-ion doped hydroxyapatite) and photocured using 405 nm laser. Further, the postprocessing procedure is carried out using fs laser to remove excessive filler materials and improve surface finish at sub-ablation threshold of enamel. The surface morphology, chemical compositions, mechanical and interfacial properties of restored enamel surface are evaluated. The in vitro evaluation study confirmed that the enamel restored with fs laser and 3D printing biocomposite is mechanically and chemically robust for withstanding oral challenges. The proposed method of restoring damaged enamel opens an opportunity for a range of precision restorative dentistry procedures including caries and tooth augmentation.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202401362\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401362\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401362","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于牙齿修复过程中边缘缺陷的形成,继发性龋齿的发病率很高。本研究提出了一种双波长超短脉冲激光系统,用于直接修复受损牙釉质,克服边缘缺陷。为了研究激光与组织的相互作用,建立了二维有限元激光烧蚀模型。采用800 nm、Ti:Sapphire飞秒(fs)激光(100 fs, 1 kHz, 1 mm s−1),平均激光功率为200 mW,在人牙釉质上制备了激光烧蚀腔(直线和圆形)。随后,用3D打印的生物复合材料(65%的3D打印树脂和35%的Ce3+离子掺杂羟基磷灰石)填充腔体,并使用405 nm激光进行光固化。在牙釉质亚烧蚀阈值下,利用激光去除多余的填充物,提高牙釉质的表面光洁度。对修复后的牙釉质表面形貌、化学成分、力学性能和界面性能进行了评价。体外评估研究证实,激光和3D打印生物复合材料修复的牙釉质在机械和化学上都很坚固,可以承受口腔的挑战。所提出的修复受损牙釉质的方法为一系列精确的修复牙科手术提供了机会,包括龋齿和牙齿增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrashort Pulsed Laser-Assisted Direct Restoration of Human Enamel Using 3D Printable Biocomposite

Ultrashort Pulsed Laser-Assisted Direct Restoration of Human Enamel Using 3D Printable Biocomposite

Restorative dentistry encounters the prevalence of secondary caries due to the formation of marginal defects during tooth restoration. The present study proposes a dual-wavelength ultrashort-pulsed laser system for the direct restoration of damaged enamel to overcome marginal defects. The 2D finite element (FE) laser-ablative model is developed for studying the laser-tissue interaction. The laser-ablated cavities (rectilinear and circular) are prepared on human enamel using 800 nm, Ti:Sapphire femtosecond (fs) laser (100 fs, 1 kHz, 1 mm s−1) at average laser power of 200 mW. Subsequently, the cavity is filled with 3D printed biocomposite (65 wt.% of 3D-printing resin and 35 wt.% of Ce3+-ion doped hydroxyapatite) and photocured using 405 nm laser. Further, the postprocessing procedure is carried out using fs laser to remove excessive filler materials and improve surface finish at sub-ablation threshold of enamel. The surface morphology, chemical compositions, mechanical and interfacial properties of restored enamel surface are evaluated. The in vitro evaluation study confirmed that the enamel restored with fs laser and 3D printing biocomposite is mechanically and chemically robust for withstanding oral challenges. The proposed method of restoring damaged enamel opens an opportunity for a range of precision restorative dentistry procedures including caries and tooth augmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信