Gábor Somodi, Neil Bar, Ákos Török, Balázs Vásárhelyi
{"title":"花岗岩和沉积岩地质强度指数(GSI)与岩体质量(q系统)的经验关系","authors":"Gábor Somodi, Neil Bar, Ákos Török, Balázs Vásárhelyi","doi":"10.1007/s10064-025-04303-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the relationship between Rock Mass Quality (Q-system) and the Geological Strength Index (GSI) parameters. Equations are suggested based on field data and calculations of the empirical results of granitic rock masses (Hungary) and siltstones, sandstones and quartzite formations (Australia). Measured and calculated GSI values vs Q values are given for granitic rocks, showing a higher correlation than that of the sedimentary rocks of Australia. The different behaviors of rock masses explain the higher correlation between GSI vs Q and GSI chart vs GSI calculated for igneous rock bodies. Despite the differences in stress fields and the highly tectonised structural geological setting of the granitic rock mass, the isotropic nature of granitic rocks vs. anisotropy of sedimentary rock bodies is reflected in the correlation coefficients.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04303-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Empirical relationship between the Geological Strength Index (GSI) and rock mass quality (Q-system) in granite and sedimentary rocks\",\"authors\":\"Gábor Somodi, Neil Bar, Ákos Török, Balázs Vásárhelyi\",\"doi\":\"10.1007/s10064-025-04303-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the relationship between Rock Mass Quality (Q-system) and the Geological Strength Index (GSI) parameters. Equations are suggested based on field data and calculations of the empirical results of granitic rock masses (Hungary) and siltstones, sandstones and quartzite formations (Australia). Measured and calculated GSI values vs Q values are given for granitic rocks, showing a higher correlation than that of the sedimentary rocks of Australia. The different behaviors of rock masses explain the higher correlation between GSI vs Q and GSI chart vs GSI calculated for igneous rock bodies. Despite the differences in stress fields and the highly tectonised structural geological setting of the granitic rock mass, the isotropic nature of granitic rocks vs. anisotropy of sedimentary rock bodies is reflected in the correlation coefficients.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 6\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10064-025-04303-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-025-04303-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04303-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Empirical relationship between the Geological Strength Index (GSI) and rock mass quality (Q-system) in granite and sedimentary rocks
This paper presents the relationship between Rock Mass Quality (Q-system) and the Geological Strength Index (GSI) parameters. Equations are suggested based on field data and calculations of the empirical results of granitic rock masses (Hungary) and siltstones, sandstones and quartzite formations (Australia). Measured and calculated GSI values vs Q values are given for granitic rocks, showing a higher correlation than that of the sedimentary rocks of Australia. The different behaviors of rock masses explain the higher correlation between GSI vs Q and GSI chart vs GSI calculated for igneous rock bodies. Despite the differences in stress fields and the highly tectonised structural geological setting of the granitic rock mass, the isotropic nature of granitic rocks vs. anisotropy of sedimentary rock bodies is reflected in the correlation coefficients.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.