Liouville CFT中的量子混沌

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Julian Sonner, Benjamin Strittmatter
{"title":"Liouville CFT中的量子混沌","authors":"Julian Sonner,&nbsp;Benjamin Strittmatter","doi":"10.1007/JHEP05(2025)017","DOIUrl":null,"url":null,"abstract":"<p>Fast scrambling is a distinctive feature of quantum gravity, which by means of holography is closely tied to the behaviour of large-<i>c</i> conformal field theories. We study this phenomenon in the context of semiclassical Liouville theory, providing both insights into the mechanism of scrambling in CFTs and into the structure of Liouville theory, finding that it exhibits a maximal Lyapunov exponent despite not featuring the identity in its spectrum. However, as we show, the states contributing to the relevant correlation function can be thought of as dressed scramblons. At a technical level we first use the path integral picture in order to derive the Euclidean four-point function in an explicit compact form. Next, we demonstrate its equivalence to a conformal block expansion, revealing an explicit but non-local map between path integral saddles and conformal blocks. By analytically continuing both expressions to Lorentzian times, we obtain two equivalent formulations of the OTOC, which we use to study the onset of chaos in Liouville theory. We take advantage of the compact form in order to extract a Lyapunov exponent and a scrambling time. From the conformal block expansion formulation of the OTOC we learn that scrambling shifts the dominance of conformal blocks from heavy primaries at early times to the lightest primary at late times. Finally, we discuss our results in the context of holography.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)017.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum chaos in Liouville CFT\",\"authors\":\"Julian Sonner,&nbsp;Benjamin Strittmatter\",\"doi\":\"10.1007/JHEP05(2025)017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fast scrambling is a distinctive feature of quantum gravity, which by means of holography is closely tied to the behaviour of large-<i>c</i> conformal field theories. We study this phenomenon in the context of semiclassical Liouville theory, providing both insights into the mechanism of scrambling in CFTs and into the structure of Liouville theory, finding that it exhibits a maximal Lyapunov exponent despite not featuring the identity in its spectrum. However, as we show, the states contributing to the relevant correlation function can be thought of as dressed scramblons. At a technical level we first use the path integral picture in order to derive the Euclidean four-point function in an explicit compact form. Next, we demonstrate its equivalence to a conformal block expansion, revealing an explicit but non-local map between path integral saddles and conformal blocks. By analytically continuing both expressions to Lorentzian times, we obtain two equivalent formulations of the OTOC, which we use to study the onset of chaos in Liouville theory. We take advantage of the compact form in order to extract a Lyapunov exponent and a scrambling time. From the conformal block expansion formulation of the OTOC we learn that scrambling shifts the dominance of conformal blocks from heavy primaries at early times to the lightest primary at late times. Finally, we discuss our results in the context of holography.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)017.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)017\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)017","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

快速置乱是量子引力的一个显著特征,它通过全息技术与大c共形场理论的行为密切相关。我们在半经典Liouville理论的背景下研究了这一现象,提供了对CFTs中置乱机制和Liouville理论结构的见解,发现它表现出极大的Lyapunov指数,尽管在其谱中不具有同一性。然而,正如我们所示,对相关函数做出贡献的状态可以被认为是经过修饰的乱序。在技术层面上,我们首先使用路径积分图来导出欧几里得四点函数的显式紧化形式。其次,我们证明了它与共形块展开的等价性,揭示了路径积分鞍与共形块之间的显式但非局部映射。通过解析地将这两个表达式延续到洛伦兹时间,我们得到了两个等效的OTOC表达式,我们用它来研究混沌在刘维尔理论中的开始。我们利用紧化形式来提取李雅普诺夫指数和置乱时间。从OTOC的共形块体展开公式可知,置乱使共形块体的优势由早期的重原生块体向后期的轻原生块体转移。最后,我们在全息摄影的背景下讨论了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum chaos in Liouville CFT

Fast scrambling is a distinctive feature of quantum gravity, which by means of holography is closely tied to the behaviour of large-c conformal field theories. We study this phenomenon in the context of semiclassical Liouville theory, providing both insights into the mechanism of scrambling in CFTs and into the structure of Liouville theory, finding that it exhibits a maximal Lyapunov exponent despite not featuring the identity in its spectrum. However, as we show, the states contributing to the relevant correlation function can be thought of as dressed scramblons. At a technical level we first use the path integral picture in order to derive the Euclidean four-point function in an explicit compact form. Next, we demonstrate its equivalence to a conformal block expansion, revealing an explicit but non-local map between path integral saddles and conformal blocks. By analytically continuing both expressions to Lorentzian times, we obtain two equivalent formulations of the OTOC, which we use to study the onset of chaos in Liouville theory. We take advantage of the compact form in order to extract a Lyapunov exponent and a scrambling time. From the conformal block expansion formulation of the OTOC we learn that scrambling shifts the dominance of conformal blocks from heavy primaries at early times to the lightest primary at late times. Finally, we discuss our results in the context of holography.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信