{"title":"引力电磁学,Kerr-Schild和Weyl双副本;统一的视角","authors":"Elena Cáceres, Brian Kent, Harita Palani Balaji","doi":"10.1007/JHEP05(2025)016","DOIUrl":null,"url":null,"abstract":"<p>Two modern programs involving analogies between general relativity and electro-magnetism, gravito-electromagnetism (GEM) and the classical double copy (CDC), induce electromagnetic potentials from specific classes of spacetime metrics. We demonstrate such electromagnetic potentials are typically gauge equivalent to Killing vectors present in the spacetime, long known themselves to be analogous to electromagnetic potentials. We utilize this perspective to relate the Type D Weyl double copy to the Kerr-Schild double copy without appealing to specific coordinates. We analyze the typical assumptions taken within Kerr-Schild double copies, emphasizing the role Killing vectors play in the construction. The basis of the GEM program utilizes comparisons of tidal tensors between GR and EM; we perform a more detailed analysis of conditions necessary for equivalent tidal tensors between the theories, and note they require the same source prescription as the classical double copy. We discuss how these Killing vector potentials relate to the Weyl double copy, in particular there must a relation between the field strength formed from the Killing vector and the Weyl tensor. We consider spacetimes admitting a Killing-Yano tensor which provide a particularly insightful example of this correspondence. This includes a broad class of spacetimes, and provides an explanation for observations regarding the splitting of the Weyl tensor noted when including sources.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)016.pdf","citationCount":"0","resultStr":"{\"title\":\"Gravito-electromagnetism, Kerr-Schild and Weyl double copies; a unified perspective\",\"authors\":\"Elena Cáceres, Brian Kent, Harita Palani Balaji\",\"doi\":\"10.1007/JHEP05(2025)016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two modern programs involving analogies between general relativity and electro-magnetism, gravito-electromagnetism (GEM) and the classical double copy (CDC), induce electromagnetic potentials from specific classes of spacetime metrics. We demonstrate such electromagnetic potentials are typically gauge equivalent to Killing vectors present in the spacetime, long known themselves to be analogous to electromagnetic potentials. We utilize this perspective to relate the Type D Weyl double copy to the Kerr-Schild double copy without appealing to specific coordinates. We analyze the typical assumptions taken within Kerr-Schild double copies, emphasizing the role Killing vectors play in the construction. The basis of the GEM program utilizes comparisons of tidal tensors between GR and EM; we perform a more detailed analysis of conditions necessary for equivalent tidal tensors between the theories, and note they require the same source prescription as the classical double copy. We discuss how these Killing vector potentials relate to the Weyl double copy, in particular there must a relation between the field strength formed from the Killing vector and the Weyl tensor. We consider spacetimes admitting a Killing-Yano tensor which provide a particularly insightful example of this correspondence. This includes a broad class of spacetimes, and provides an explanation for observations regarding the splitting of the Weyl tensor noted when including sources.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)016.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)016\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)016","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Gravito-electromagnetism, Kerr-Schild and Weyl double copies; a unified perspective
Two modern programs involving analogies between general relativity and electro-magnetism, gravito-electromagnetism (GEM) and the classical double copy (CDC), induce electromagnetic potentials from specific classes of spacetime metrics. We demonstrate such electromagnetic potentials are typically gauge equivalent to Killing vectors present in the spacetime, long known themselves to be analogous to electromagnetic potentials. We utilize this perspective to relate the Type D Weyl double copy to the Kerr-Schild double copy without appealing to specific coordinates. We analyze the typical assumptions taken within Kerr-Schild double copies, emphasizing the role Killing vectors play in the construction. The basis of the GEM program utilizes comparisons of tidal tensors between GR and EM; we perform a more detailed analysis of conditions necessary for equivalent tidal tensors between the theories, and note they require the same source prescription as the classical double copy. We discuss how these Killing vector potentials relate to the Weyl double copy, in particular there must a relation between the field strength formed from the Killing vector and the Weyl tensor. We consider spacetimes admitting a Killing-Yano tensor which provide a particularly insightful example of this correspondence. This includes a broad class of spacetimes, and provides an explanation for observations regarding the splitting of the Weyl tensor noted when including sources.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).