能量有限的量子动力学

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Lauritz van Luijk
{"title":"能量有限的量子动力学","authors":"Lauritz van Luijk","doi":"10.1007/s00220-025-05282-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider quantum systems with energy constraints relative to a reference Hamiltonian. In general, quantum channels and continuous-time dynamics need not satisfy energy conservation. Physically meaningful channels, however, only introduce a finite amount of energy to the system, and continuous-time dynamics only increase the energy gradually over time. We systematically study such “energy-limited” channels and dynamics. For Markovian dynamics, energy-limitedness is equivalent to a single operator inequality in the Heisenberg picture. We observe new submultiplicativity inequalities for the energy-constrained diamond and operator norm. As an application, we derive new state-dependent continuity bounds for quantum speed limits.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05282-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy-Limited Quantum Dynamics\",\"authors\":\"Lauritz van Luijk\",\"doi\":\"10.1007/s00220-025-05282-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider quantum systems with energy constraints relative to a reference Hamiltonian. In general, quantum channels and continuous-time dynamics need not satisfy energy conservation. Physically meaningful channels, however, only introduce a finite amount of energy to the system, and continuous-time dynamics only increase the energy gradually over time. We systematically study such “energy-limited” channels and dynamics. For Markovian dynamics, energy-limitedness is equivalent to a single operator inequality in the Heisenberg picture. We observe new submultiplicativity inequalities for the energy-constrained diamond and operator norm. As an application, we derive new state-dependent continuity bounds for quantum speed limits.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05282-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05282-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05282-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑相对于参考哈密顿量具有能量约束的量子系统。一般来说,量子通道和连续时间动力学不需要满足能量守恒。然而,物理上有意义的通道只向系统引入有限的能量,而连续时间动力学只是随着时间的推移逐渐增加能量。我们系统地研究了这种“能量有限”的渠道和动态。对于马尔可夫动力学,能量有限性相当于海森堡图中的单个算子不等式。我们观察到了能量约束菱形和算子范数的新的次乘法不等式。作为应用,我们导出了量子速度极限的新的状态相关连续性边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Limited Quantum Dynamics

We consider quantum systems with energy constraints relative to a reference Hamiltonian. In general, quantum channels and continuous-time dynamics need not satisfy energy conservation. Physically meaningful channels, however, only introduce a finite amount of energy to the system, and continuous-time dynamics only increase the energy gradually over time. We systematically study such “energy-limited” channels and dynamics. For Markovian dynamics, energy-limitedness is equivalent to a single operator inequality in the Heisenberg picture. We observe new submultiplicativity inequalities for the energy-constrained diamond and operator norm. As an application, we derive new state-dependent continuity bounds for quantum speed limits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信