微纳增强三模态晶粒金属基复合材料的强度-延性协同效应

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Hang Sun, Farhad Saba, Genlian Fan, Zhanqiu Tan, Zhiqiang Li
{"title":"微纳增强三模态晶粒金属基复合材料的强度-延性协同效应","authors":"Hang Sun,&nbsp;Farhad Saba,&nbsp;Genlian Fan,&nbsp;Zhanqiu Tan,&nbsp;Zhiqiang Li","doi":"10.1016/j.coco.2025.102442","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, B<sub>4</sub>C(CNT)/Al-trimodal composites were fabricated via powder metallurgy, leveraging grain evolution induced by ball milling and the grain-boundary pinning effect of nano-reinforcements. Compared to bimodal composites, the trimodal structure achieved a marginal strength enhancement while increasing elongation by ∼24.8 % and improving the work hardening rate. The incorporation of intermediate-scale fine grains (FG) promoted heterogeneous interface formation, facilitating geometrically necessary dislocation (GND) accumulation during deformation. The FG modulated the local GND density distribution, while digital image correlation (DIC) analysis confirmed enhanced stress and strain delocalization. Fractographic examination revealed multi-scale dimple structures, indicative of improved ductility. The optimized composite exhibited a tensile strength of ∼610 MPa and an elongation of ∼6.5 %. This work introduces intermediate-level microstructural regulation to elucidate dislocation behavior, coordinated deformation, and fracture mechanisms, offering insights for designing high-performance heterogeneous metal matrix composites (MMCs) for advanced applications.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"57 ","pages":"Article 102442"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength-ductility synergy in micro-nano reinforced trimodal grained metal matrix composites\",\"authors\":\"Hang Sun,&nbsp;Farhad Saba,&nbsp;Genlian Fan,&nbsp;Zhanqiu Tan,&nbsp;Zhiqiang Li\",\"doi\":\"10.1016/j.coco.2025.102442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, B<sub>4</sub>C(CNT)/Al-trimodal composites were fabricated via powder metallurgy, leveraging grain evolution induced by ball milling and the grain-boundary pinning effect of nano-reinforcements. Compared to bimodal composites, the trimodal structure achieved a marginal strength enhancement while increasing elongation by ∼24.8 % and improving the work hardening rate. The incorporation of intermediate-scale fine grains (FG) promoted heterogeneous interface formation, facilitating geometrically necessary dislocation (GND) accumulation during deformation. The FG modulated the local GND density distribution, while digital image correlation (DIC) analysis confirmed enhanced stress and strain delocalization. Fractographic examination revealed multi-scale dimple structures, indicative of improved ductility. The optimized composite exhibited a tensile strength of ∼610 MPa and an elongation of ∼6.5 %. This work introduces intermediate-level microstructural regulation to elucidate dislocation behavior, coordinated deformation, and fracture mechanisms, offering insights for designing high-performance heterogeneous metal matrix composites (MMCs) for advanced applications.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"57 \",\"pages\":\"Article 102442\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925001950\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001950","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用球磨引起的晶粒演化和纳米增强材料的晶界钉住效应,通过粉末冶金法制备了B4C(CNT)/ al三模复合材料。与双峰复合材料相比,三峰复合材料获得了边际强度增强,伸长率提高了~ 24.8%,加工硬化率也有所提高。中等尺度细晶粒(FG)的加入促进了非均质界面的形成,促进了变形过程中几何上必要的位错(GND)的积累。FG调节了局部GND密度分布,而数字图像相关(DIC)分析证实了应力和应变的非局部化。断口检查显示多尺度韧窝结构,表明延展性提高。优化后的复合材料抗拉强度为~ 610 MPa,伸长率为~ 6.5%。这项工作引入了中级微观结构调节来阐明位错行为、协调变形和断裂机制,为设计高性能的非均质金属基复合材料(MMCs)提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength-ductility synergy in micro-nano reinforced trimodal grained metal matrix composites
In this study, B4C(CNT)/Al-trimodal composites were fabricated via powder metallurgy, leveraging grain evolution induced by ball milling and the grain-boundary pinning effect of nano-reinforcements. Compared to bimodal composites, the trimodal structure achieved a marginal strength enhancement while increasing elongation by ∼24.8 % and improving the work hardening rate. The incorporation of intermediate-scale fine grains (FG) promoted heterogeneous interface formation, facilitating geometrically necessary dislocation (GND) accumulation during deformation. The FG modulated the local GND density distribution, while digital image correlation (DIC) analysis confirmed enhanced stress and strain delocalization. Fractographic examination revealed multi-scale dimple structures, indicative of improved ductility. The optimized composite exhibited a tensile strength of ∼610 MPa and an elongation of ∼6.5 %. This work introduces intermediate-level microstructural regulation to elucidate dislocation behavior, coordinated deformation, and fracture mechanisms, offering insights for designing high-performance heterogeneous metal matrix composites (MMCs) for advanced applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信