评价黑虻壳聚糖去除废水中刚果红的效率和可扩展性

Q1 Environmental Science
Linda Hevira , Joshua O. Ighalo , Dewi Sondari , Arzqa Sabila Hanifah
{"title":"评价黑虻壳聚糖去除废水中刚果红的效率和可扩展性","authors":"Linda Hevira ,&nbsp;Joshua O. Ighalo ,&nbsp;Dewi Sondari ,&nbsp;Arzqa Sabila Hanifah","doi":"10.1016/j.biteb.2025.102132","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated chitosan extracted from black soldier fly (BSF) exuviae for Congo Red (CR) removal from wastewater and assessed its cost-effectiveness and scalability. BSF chitosan was extracted through a multi-step process comprising demineralization, deproteinization, and deacetylation. The resulting chitosan underwent characterization using SEM, EDS, FT-IR, N<sub>2</sub> physisorption, TGA, and XRD. Optimal conditions for CR adsorption were determined to be pH 6, initial concentration of 265 mg/L and 45 min contact time. Chitosan derived from BSF demonstrated a maximum adsorption capacity of 110.63 mg/g. The adsorption followed the Langmuir isotherm suggesting monolayer adsorption, and pseudo-second order kinetics model. Thermodynamic analysis demonstrated that the process was endothermic and spontaneous between 298 and 318 K. Desorption was effectively achieved using 30 % glycerol, with the chitosan maintaining efficacy for three cycles. The overall removal rate in real wastewater attained 96 %, with an adsorbent cost of 0.33 USD/g CR.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"30 ","pages":"Article 102132"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the efficiency and scalability of chitosan from black soldier fly in removing Congo red from wastewater\",\"authors\":\"Linda Hevira ,&nbsp;Joshua O. Ighalo ,&nbsp;Dewi Sondari ,&nbsp;Arzqa Sabila Hanifah\",\"doi\":\"10.1016/j.biteb.2025.102132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated chitosan extracted from black soldier fly (BSF) exuviae for Congo Red (CR) removal from wastewater and assessed its cost-effectiveness and scalability. BSF chitosan was extracted through a multi-step process comprising demineralization, deproteinization, and deacetylation. The resulting chitosan underwent characterization using SEM, EDS, FT-IR, N<sub>2</sub> physisorption, TGA, and XRD. Optimal conditions for CR adsorption were determined to be pH 6, initial concentration of 265 mg/L and 45 min contact time. Chitosan derived from BSF demonstrated a maximum adsorption capacity of 110.63 mg/g. The adsorption followed the Langmuir isotherm suggesting monolayer adsorption, and pseudo-second order kinetics model. Thermodynamic analysis demonstrated that the process was endothermic and spontaneous between 298 and 318 K. Desorption was effectively achieved using 30 % glycerol, with the chitosan maintaining efficacy for three cycles. The overall removal rate in real wastewater attained 96 %, with an adsorbent cost of 0.33 USD/g CR.</div></div>\",\"PeriodicalId\":8947,\"journal\":{\"name\":\"Bioresource Technology Reports\",\"volume\":\"30 \",\"pages\":\"Article 102132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589014X25001148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

研究了从黑兵蝇(BSF)蜕皮中提取壳聚糖用于废水中刚果红(CR)去除的工艺,并对其成本效益和可扩展性进行了评价。通过脱矿、脱蛋白、脱乙酰等步骤提取壳聚糖。采用SEM、EDS、FT-IR、N2物理吸附、TGA和XRD对壳聚糖进行了表征。确定了CR吸附的最佳条件为pH为6,初始浓度为265 mg/L,接触时间为45 min。壳聚糖的最大吸附量为110.63 mg/g。吸附过程遵循Langmuir等温线,为准二级吸附动力学模型。热力学分析表明,该反应在298 ~ 318k范围内为吸热自发反应。30%的甘油可有效解吸,壳聚糖的解吸效果可维持3个循环。实际废水的总体去除率达到96%,吸附剂成本为0.33美元/g CR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating the efficiency and scalability of chitosan from black soldier fly in removing Congo red from wastewater

Evaluating the efficiency and scalability of chitosan from black soldier fly in removing Congo red from wastewater
This study investigated chitosan extracted from black soldier fly (BSF) exuviae for Congo Red (CR) removal from wastewater and assessed its cost-effectiveness and scalability. BSF chitosan was extracted through a multi-step process comprising demineralization, deproteinization, and deacetylation. The resulting chitosan underwent characterization using SEM, EDS, FT-IR, N2 physisorption, TGA, and XRD. Optimal conditions for CR adsorption were determined to be pH 6, initial concentration of 265 mg/L and 45 min contact time. Chitosan derived from BSF demonstrated a maximum adsorption capacity of 110.63 mg/g. The adsorption followed the Langmuir isotherm suggesting monolayer adsorption, and pseudo-second order kinetics model. Thermodynamic analysis demonstrated that the process was endothermic and spontaneous between 298 and 318 K. Desorption was effectively achieved using 30 % glycerol, with the chitosan maintaining efficacy for three cycles. The overall removal rate in real wastewater attained 96 %, with an adsorbent cost of 0.33 USD/g CR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信