Yu Zhang , Shuang Li , Yibing Wang , Yu Sun , Tingting Huang , Wenyi Xiang , Changhui Li
{"title":"基于结构先验的光声成像伪影去除迭代优化算法","authors":"Yu Zhang , Shuang Li , Yibing Wang , Yu Sun , Tingting Huang , Wenyi Xiang , Changhui Li","doi":"10.1016/j.pacs.2025.100726","DOIUrl":null,"url":null,"abstract":"<div><div>In reality, photoacoustic imaging (PAI) is generally influenced by artifacts caused by sparse array or limited view. In this work, to balance the computing cost and artifact removal performance, we propose an iterative optimization method that does not need to repeat solving forward model for every iteration circle, called the regularized iteration method with structural prior (RISP). The structural prior is a probability matrix derived from multiple reconstructed images via randomly selecting partial array elements. High-probability values indicate high coherency among multiple reconstruction results at those positions, suggesting a high likelihood of representing true imaging results. In contrast, low-probability values indicate higher randomness, leaning more towards artifacts or noise. As a structural prior, this probability matrix, together with the original PAI result using all array elements, guides the regularized iteration of the PAI results. The simulation and real animal and human PAI study results demonstrated our method can substantially reduce image artifacts, as well as noise.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"44 ","pages":"Article 100726"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative optimization algorithm with structural prior for artifacts removal of photoacoustic imaging\",\"authors\":\"Yu Zhang , Shuang Li , Yibing Wang , Yu Sun , Tingting Huang , Wenyi Xiang , Changhui Li\",\"doi\":\"10.1016/j.pacs.2025.100726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In reality, photoacoustic imaging (PAI) is generally influenced by artifacts caused by sparse array or limited view. In this work, to balance the computing cost and artifact removal performance, we propose an iterative optimization method that does not need to repeat solving forward model for every iteration circle, called the regularized iteration method with structural prior (RISP). The structural prior is a probability matrix derived from multiple reconstructed images via randomly selecting partial array elements. High-probability values indicate high coherency among multiple reconstruction results at those positions, suggesting a high likelihood of representing true imaging results. In contrast, low-probability values indicate higher randomness, leaning more towards artifacts or noise. As a structural prior, this probability matrix, together with the original PAI result using all array elements, guides the regularized iteration of the PAI results. The simulation and real animal and human PAI study results demonstrated our method can substantially reduce image artifacts, as well as noise.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"44 \",\"pages\":\"Article 100726\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597925000497\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000497","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Iterative optimization algorithm with structural prior for artifacts removal of photoacoustic imaging
In reality, photoacoustic imaging (PAI) is generally influenced by artifacts caused by sparse array or limited view. In this work, to balance the computing cost and artifact removal performance, we propose an iterative optimization method that does not need to repeat solving forward model for every iteration circle, called the regularized iteration method with structural prior (RISP). The structural prior is a probability matrix derived from multiple reconstructed images via randomly selecting partial array elements. High-probability values indicate high coherency among multiple reconstruction results at those positions, suggesting a high likelihood of representing true imaging results. In contrast, low-probability values indicate higher randomness, leaning more towards artifacts or noise. As a structural prior, this probability matrix, together with the original PAI result using all array elements, guides the regularized iteration of the PAI results. The simulation and real animal and human PAI study results demonstrated our method can substantially reduce image artifacts, as well as noise.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.