Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie , Maksim Zhukovskii
{"title":"随机图中二部图的饱和数","authors":"Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie , Maksim Zhukovskii","doi":"10.1016/j.disc.2025.114561","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <em>F</em>, the <em>F</em>-saturation number of a graph <em>G</em>, denoted by <span><math><mrow><mi>sat</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the minimum number of edges in an edge-maximal <em>F</em>-free subgraph of <em>G</em>. In 2017, Korándi and Sudakov determined <figure><img></figure> asymptotically, where <figure><img></figure> denotes the Erdős–Rényi random graph and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the complete graph on <em>r</em> vertices. In this paper, among other results, we present an asymptotic upper bound on <figure><img></figure> for any bipartite graph <em>F</em> and also an asymptotic lower bound on <figure><img></figure> for any complete bipartite graph <em>F</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114561"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturation numbers of bipartite graphs in random graphs\",\"authors\":\"Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie , Maksim Zhukovskii\",\"doi\":\"10.1016/j.disc.2025.114561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given graph <em>F</em>, the <em>F</em>-saturation number of a graph <em>G</em>, denoted by <span><math><mrow><mi>sat</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the minimum number of edges in an edge-maximal <em>F</em>-free subgraph of <em>G</em>. In 2017, Korándi and Sudakov determined <figure><img></figure> asymptotically, where <figure><img></figure> denotes the Erdős–Rényi random graph and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the complete graph on <em>r</em> vertices. In this paper, among other results, we present an asymptotic upper bound on <figure><img></figure> for any bipartite graph <em>F</em> and also an asymptotic lower bound on <figure><img></figure> for any complete bipartite graph <em>F</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114561\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001694\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001694","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Saturation numbers of bipartite graphs in random graphs
For a given graph F, the F-saturation number of a graph G, denoted by , is the minimum number of edges in an edge-maximal F-free subgraph of G. In 2017, Korándi and Sudakov determined asymptotically, where denotes the Erdős–Rényi random graph and is the complete graph on r vertices. In this paper, among other results, we present an asymptotic upper bound on for any bipartite graph F and also an asymptotic lower bound on for any complete bipartite graph F.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.