随机图中二部图的饱和数

IF 0.7 3区 数学 Q2 MATHEMATICS
Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie , Maksim Zhukovskii
{"title":"随机图中二部图的饱和数","authors":"Meysam Miralaei ,&nbsp;Ali Mohammadian ,&nbsp;Behruz Tayfeh-Rezaie ,&nbsp;Maksim Zhukovskii","doi":"10.1016/j.disc.2025.114561","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <em>F</em>, the <em>F</em>-saturation number of a graph <em>G</em>, denoted by <span><math><mrow><mi>sat</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the minimum number of edges in an edge-maximal <em>F</em>-free subgraph of <em>G</em>. In 2017, Korándi and Sudakov determined <figure><img></figure> asymptotically, where <figure><img></figure> denotes the Erdős–Rényi random graph and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the complete graph on <em>r</em> vertices. In this paper, among other results, we present an asymptotic upper bound on <figure><img></figure> for any bipartite graph <em>F</em> and also an asymptotic lower bound on <figure><img></figure> for any complete bipartite graph <em>F</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114561"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturation numbers of bipartite graphs in random graphs\",\"authors\":\"Meysam Miralaei ,&nbsp;Ali Mohammadian ,&nbsp;Behruz Tayfeh-Rezaie ,&nbsp;Maksim Zhukovskii\",\"doi\":\"10.1016/j.disc.2025.114561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given graph <em>F</em>, the <em>F</em>-saturation number of a graph <em>G</em>, denoted by <span><math><mrow><mi>sat</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the minimum number of edges in an edge-maximal <em>F</em>-free subgraph of <em>G</em>. In 2017, Korándi and Sudakov determined <figure><img></figure> asymptotically, where <figure><img></figure> denotes the Erdős–Rényi random graph and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the complete graph on <em>r</em> vertices. In this paper, among other results, we present an asymptotic upper bound on <figure><img></figure> for any bipartite graph <em>F</em> and also an asymptotic lower bound on <figure><img></figure> for any complete bipartite graph <em>F</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114561\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001694\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001694","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的图F,图G的F饱和数,用sat(G,F)表示,是G的最大边无F子图的最小边数。2017年,Korándi和Sudakov渐近确定,其中表示Erdős-Rényi随机图,Kr是r个顶点上的完全图。本文给出了任意二部图F的渐近上界和任意完全二部图F的渐近下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saturation numbers of bipartite graphs in random graphs
For a given graph F, the F-saturation number of a graph G, denoted by sat(G,F), is the minimum number of edges in an edge-maximal F-free subgraph of G. In 2017, Korándi and Sudakov determined
asymptotically, where
denotes the Erdős–Rényi random graph and Kr is the complete graph on r vertices. In this paper, among other results, we present an asymptotic upper bound on
for any bipartite graph F and also an asymptotic lower bound on
for any complete bipartite graph F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信