泥沙间隔减少和0-Auslander三角化分类

IF 0.7 2区 数学 Q2 MATHEMATICS
Jixing Pan , Bin Zhu
{"title":"泥沙间隔减少和0-Auslander三角化分类","authors":"Jixing Pan ,&nbsp;Bin Zhu","doi":"10.1016/j.jpaa.2025.107978","DOIUrl":null,"url":null,"abstract":"<div><div>We give a reduction technique for silting intervals in extriangulated categories, which we call silting interval reduction. It provides a reduction technique for tilting subcategories when the extriangulated categories are exact categories.</div><div>In 0-Auslander extriangulated categories (a generalization of the well-known two-term category <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow></msup><mo>(</mo><mrow><mi>proj</mi></mrow><mi>Λ</mi><mo>)</mo></math></span> for an Artin algebra Λ), we provide a reduction theory for silting objects as an application of silting interval reduction. It unifies two-term silting reduction and Iyama-Yoshino's 2-Calabi-Yau reduction. The mutation theory developed by Gorsky, Nakaoka and Palu recently can be deduced from it. Since there are bijections between the silting objects and the support <em>τ</em>-tilting modules over certain finite dimensional algebras, we show it is compatible with <em>τ</em>-tilting reduction. This compatibility theorem also unifies the two compatibility theorems obtained by Jasso in his work on <em>τ</em>-tilting reduction.</div><div>We give a new construction for 0-Auslander extriangulated categories using silting mutation, together with silting interval reduction, we obtain some results on silting quivers. Finally, we prove that <em>d</em>-Auslander extriangulated categories are related to a certain sequence of silting mutations.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107978"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silting interval reduction and 0-Auslander extriangulated categories\",\"authors\":\"Jixing Pan ,&nbsp;Bin Zhu\",\"doi\":\"10.1016/j.jpaa.2025.107978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a reduction technique for silting intervals in extriangulated categories, which we call silting interval reduction. It provides a reduction technique for tilting subcategories when the extriangulated categories are exact categories.</div><div>In 0-Auslander extriangulated categories (a generalization of the well-known two-term category <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow></msup><mo>(</mo><mrow><mi>proj</mi></mrow><mi>Λ</mi><mo>)</mo></math></span> for an Artin algebra Λ), we provide a reduction theory for silting objects as an application of silting interval reduction. It unifies two-term silting reduction and Iyama-Yoshino's 2-Calabi-Yau reduction. The mutation theory developed by Gorsky, Nakaoka and Palu recently can be deduced from it. Since there are bijections between the silting objects and the support <em>τ</em>-tilting modules over certain finite dimensional algebras, we show it is compatible with <em>τ</em>-tilting reduction. This compatibility theorem also unifies the two compatibility theorems obtained by Jasso in his work on <em>τ</em>-tilting reduction.</div><div>We give a new construction for 0-Auslander extriangulated categories using silting mutation, together with silting interval reduction, we obtain some results on silting quivers. Finally, we prove that <em>d</em>-Auslander extriangulated categories are related to a certain sequence of silting mutations.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107978\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001173\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一种外三角分类中泥沙间隔的缩减技术,我们称之为泥沙间隔缩减。当外三角化的类别是精确类别时,它提供了一种倾斜子类别的约简技术。在0- auslander外三角范畴(对于Artin代数Λ的众所周知的两项范畴K[−1,0](projΛ)的推广)中,我们提供了一个关于淤积物体的约简理论,作为淤积区间约简的应用。它结合了两期淤积减少和Iyama-Yoshino的2-Calabi-Yau减少。最近由Gorsky, Nakaoka和Palu提出的突变理论可以从它推导出来。由于在某些有限维代数上,泥沙物体与支撑τ-倾模之间存在双射,我们证明了它与τ-倾约简是相容的。该相容定理也统一了Jasso在τ-倾斜约简中得到的两个相容定理。利用淤积突变给出了0-Auslander外三角范畴的新构造,并结合淤积区间的缩减,得到了一些关于淤积颤振的结果。最后,我们证明了d-Auslander外三角分类与一定的泥沙突变序列有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silting interval reduction and 0-Auslander extriangulated categories
We give a reduction technique for silting intervals in extriangulated categories, which we call silting interval reduction. It provides a reduction technique for tilting subcategories when the extriangulated categories are exact categories.
In 0-Auslander extriangulated categories (a generalization of the well-known two-term category K[1,0](projΛ) for an Artin algebra Λ), we provide a reduction theory for silting objects as an application of silting interval reduction. It unifies two-term silting reduction and Iyama-Yoshino's 2-Calabi-Yau reduction. The mutation theory developed by Gorsky, Nakaoka and Palu recently can be deduced from it. Since there are bijections between the silting objects and the support τ-tilting modules over certain finite dimensional algebras, we show it is compatible with τ-tilting reduction. This compatibility theorem also unifies the two compatibility theorems obtained by Jasso in his work on τ-tilting reduction.
We give a new construction for 0-Auslander extriangulated categories using silting mutation, together with silting interval reduction, we obtain some results on silting quivers. Finally, we prove that d-Auslander extriangulated categories are related to a certain sequence of silting mutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信