机器学习增强的MALDI-TOF质谱用于食品加工中耐抗生素大肠杆菌的实时检测

IF 6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Hong-Ting Victor Lin , Tien-Wei Yang , Wen-Jung Lu , Hong-Jhen Chiang , Pang-Hung Hsu
{"title":"机器学习增强的MALDI-TOF质谱用于食品加工中耐抗生素大肠杆菌的实时检测","authors":"Hong-Ting Victor Lin ,&nbsp;Tien-Wei Yang ,&nbsp;Wen-Jung Lu ,&nbsp;Hong-Jhen Chiang ,&nbsp;Pang-Hung Hsu","doi":"10.1016/j.lwt.2025.117860","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic-resistant <em>Escherichia coli</em> in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant <em>E. coli</em> in food processing environments. Analysis of 69 <em>E. coli</em> isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"224 ","pages":"Article 117860"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing\",\"authors\":\"Hong-Ting Victor Lin ,&nbsp;Tien-Wei Yang ,&nbsp;Wen-Jung Lu ,&nbsp;Hong-Jhen Chiang ,&nbsp;Pang-Hung Hsu\",\"doi\":\"10.1016/j.lwt.2025.117860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antibiotic-resistant <em>Escherichia coli</em> in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant <em>E. coli</em> in food processing environments. Analysis of 69 <em>E. coli</em> isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.</div></div>\",\"PeriodicalId\":382,\"journal\":{\"name\":\"LWT - Food Science and Technology\",\"volume\":\"224 \",\"pages\":\"Article 117860\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LWT - Food Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0023643825005444\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LWT - Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023643825005444","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食品加工中的耐抗生素大肠杆菌对公众健康构成重大风险,需要快速检测方法。本研究开发了一种将基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)与机器学习相结合的创新方法,用于快速检测食品加工环境中的耐抗生素大肠杆菌。对从食品加工设施中分离出的69株大肠杆菌进行的分析显示,耐药率很高,对碳青霉烯类抗生素的耐药率从0%到链霉素和磺胺甲恶唑-甲氧苄啶等抗生素的耐药率为100%。这些发现突出了严重的食品安全问题,并强调了快速检测方法的必要性。在使用MALDI-TOF MS数据训练的机器学习模型中,优化后的随机森林模型表现出优异的性能,不同抗生素的交叉验证准确率在67 - 97%之间。使用28个食品来源样品进行验证,证实了其对多种抗生素类别的高预测准确性,包括青霉素、氯霉素、磺胺、四环素和氨基糖苷。该方法为抗生素耐药性检测提供了一种快速、准确的工具,为高通量加工环境中的食品安全监测提供了显著优势。未来的改进应侧重于提高(氟)喹诺酮类药物预测的准确性,以便在食品生产中进行全面的抗微生物药物耐药性监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing
Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
LWT - Food Science and Technology
LWT - Food Science and Technology 工程技术-食品科技
CiteScore
11.80
自引率
6.70%
发文量
1724
审稿时长
65 days
期刊介绍: LWT - Food Science and Technology is an international journal that publishes innovative papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition. The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified. Contributions written in English are welcomed in the form of review articles, short reviews, research papers, and research notes. Papers featuring animal trials and cell cultures are outside the scope of the journal and will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信