Mayra S. Tovar-Oliva , Venkata S.R.K. Tandava , Franziska Bößl , Valentin C. Menzel , Josaine A. Zarco-Roldán , Rebecca Rae , Caroline Kirk , Sebastián Murcia-López , Ignacio Tudela
{"title":"优化电沉积参数的重要性,可扩展和经济高效地制造Cu催化剂,用于有效的电化学CO2还原到可再生燃料和化学原料","authors":"Mayra S. Tovar-Oliva , Venkata S.R.K. Tandava , Franziska Bößl , Valentin C. Menzel , Josaine A. Zarco-Roldán , Rebecca Rae , Caroline Kirk , Sebastián Murcia-López , Ignacio Tudela","doi":"10.1016/j.mtsust.2025.101116","DOIUrl":null,"url":null,"abstract":"<div><div>The electrodeposition of Cu-based catalysts onto commercial gas diffusion layers (GDLs) provides a scalable approach to the manufacturing of gas diffusion electrodes (GDEs) for efficient electrochemical CO<sub>2</sub> reduction into renewable fuels and chemicals. This study investigates the influence of electrodeposition parameters on the characteristics and performance of GDEs. The effect of different process parameters on the reproducibility of the GDEs was analysed, highlighting the importance of current density in overcoming nucleation issues that could cause uneven catalyst distribution. The relationship between current density, catalyst loading and GDE performance was then evaluated, revealing the necessity of balancing these parameters to achieve uniform catalyst distribution and prevent the formation of semi-continuous films that may block the surface of the GDL, negatively affecting the performance of the GDEs. By optimising both current density (30 mA cm<sup>−2</sup>) and catalyst loading (1 C cm<sup>−2</sup> or <span><math><mo>≈</mo></math></span> 0.33 mg cm<sup>−2</sup>), we prepared large GDEs (geometrical electrode active area of 5 cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) that achieved up to 70% Faradaic efficiency for the conversion of CO<sub>2</sub> into useful products such as C<sub>2</sub>H<sub>4</sub>, <figure><img></figure> or <figure><img></figure> under industrially relevant conditions (applied current density of 200 mA cm<sup>−2</sup> during CO<sub>2</sub> electrolysis) while saving 50% of catalyst material and 75% of electrodeposition time when compared to other GDEs prepared under different process parameters (e.g. 15 mA cm<sup>−2</sup> and 2 C cm<sup>−2</sup> or <span><math><mo>≈</mo></math></span> 0.66 mg cm<sup>−2</sup>). These results illustrate how important it is to adopt a strategic approach towards developing catalysts fabricated by electrodeposition, demonstrating how it is possible to significantly reduce their material and processing costs without compromising their performance.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"31 ","pages":"Article 101116"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance of optimising electrodeposition parameters for scalable and cost-effective manufacturing of Cu catalysts for efficient electrochemical CO2 reduction to renewable fuels and chemical feedstocks\",\"authors\":\"Mayra S. Tovar-Oliva , Venkata S.R.K. Tandava , Franziska Bößl , Valentin C. Menzel , Josaine A. Zarco-Roldán , Rebecca Rae , Caroline Kirk , Sebastián Murcia-López , Ignacio Tudela\",\"doi\":\"10.1016/j.mtsust.2025.101116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electrodeposition of Cu-based catalysts onto commercial gas diffusion layers (GDLs) provides a scalable approach to the manufacturing of gas diffusion electrodes (GDEs) for efficient electrochemical CO<sub>2</sub> reduction into renewable fuels and chemicals. This study investigates the influence of electrodeposition parameters on the characteristics and performance of GDEs. The effect of different process parameters on the reproducibility of the GDEs was analysed, highlighting the importance of current density in overcoming nucleation issues that could cause uneven catalyst distribution. The relationship between current density, catalyst loading and GDE performance was then evaluated, revealing the necessity of balancing these parameters to achieve uniform catalyst distribution and prevent the formation of semi-continuous films that may block the surface of the GDL, negatively affecting the performance of the GDEs. By optimising both current density (30 mA cm<sup>−2</sup>) and catalyst loading (1 C cm<sup>−2</sup> or <span><math><mo>≈</mo></math></span> 0.33 mg cm<sup>−2</sup>), we prepared large GDEs (geometrical electrode active area of 5 cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) that achieved up to 70% Faradaic efficiency for the conversion of CO<sub>2</sub> into useful products such as C<sub>2</sub>H<sub>4</sub>, <figure><img></figure> or <figure><img></figure> under industrially relevant conditions (applied current density of 200 mA cm<sup>−2</sup> during CO<sub>2</sub> electrolysis) while saving 50% of catalyst material and 75% of electrodeposition time when compared to other GDEs prepared under different process parameters (e.g. 15 mA cm<sup>−2</sup> and 2 C cm<sup>−2</sup> or <span><math><mo>≈</mo></math></span> 0.66 mg cm<sup>−2</sup>). These results illustrate how important it is to adopt a strategic approach towards developing catalysts fabricated by electrodeposition, demonstrating how it is possible to significantly reduce their material and processing costs without compromising their performance.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"31 \",\"pages\":\"Article 101116\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725000454\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
将cu基催化剂电沉积到商业气体扩散层(gdl)上,为制造气体扩散电极(gde)提供了一种可扩展的方法,可以有效地将二氧化碳电化学还原为可再生燃料和化学品。研究了电沉积参数对gde特性和性能的影响。分析了不同工艺参数对gde重现性的影响,强调了电流密度对克服可能导致催化剂分布不均匀的成核问题的重要性。然后评估了电流密度、催化剂负载与GDE性能之间的关系,揭示了平衡这些参数的必要性,以实现均匀的催化剂分布,防止形成可能阻塞GDL表面的半连续膜,从而对GDE性能产生负面影响。通过优化电流密度(30 mA cm−2)和催化剂负载(1 C cm−2或≈0.33 mg cm−2),我们制备了大型gde(几何电极活性面积为5 cm2),其将二氧化碳转化为有用产品(如C2H4)的法拉第效率高达70%。或在工业相关条件下(CO2电解过程中施加的电流密度为200 mA cm - 2),同时与在不同工艺参数下制备的其他gde(例如15 mA cm - 2和2 C cm - 2或≈0.66 mg cm - 2)相比,节省50%的催化剂材料和75%的电沉积时间。这些结果说明了采用一种战略方法来开发电沉积制造的催化剂是多么重要,证明了如何在不影响其性能的情况下显着降低其材料和加工成本。
Importance of optimising electrodeposition parameters for scalable and cost-effective manufacturing of Cu catalysts for efficient electrochemical CO2 reduction to renewable fuels and chemical feedstocks
The electrodeposition of Cu-based catalysts onto commercial gas diffusion layers (GDLs) provides a scalable approach to the manufacturing of gas diffusion electrodes (GDEs) for efficient electrochemical CO2 reduction into renewable fuels and chemicals. This study investigates the influence of electrodeposition parameters on the characteristics and performance of GDEs. The effect of different process parameters on the reproducibility of the GDEs was analysed, highlighting the importance of current density in overcoming nucleation issues that could cause uneven catalyst distribution. The relationship between current density, catalyst loading and GDE performance was then evaluated, revealing the necessity of balancing these parameters to achieve uniform catalyst distribution and prevent the formation of semi-continuous films that may block the surface of the GDL, negatively affecting the performance of the GDEs. By optimising both current density (30 mA cm−2) and catalyst loading (1 C cm−2 or 0.33 mg cm−2), we prepared large GDEs (geometrical electrode active area of 5 cm) that achieved up to 70% Faradaic efficiency for the conversion of CO2 into useful products such as C2H4, or under industrially relevant conditions (applied current density of 200 mA cm−2 during CO2 electrolysis) while saving 50% of catalyst material and 75% of electrodeposition time when compared to other GDEs prepared under different process parameters (e.g. 15 mA cm−2 and 2 C cm−2 or 0.66 mg cm−2). These results illustrate how important it is to adopt a strategic approach towards developing catalysts fabricated by electrodeposition, demonstrating how it is possible to significantly reduce their material and processing costs without compromising their performance.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.