合成一种新型高活性、高表面积单原子纳米酶Cu-N-C,作为漆酶模拟催化剂,在室温下高效催化吡啶和喹唑啉酮的有氧氧化合成

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Hamzeh Veisi, Amin Rostami
{"title":"合成一种新型高活性、高表面积单原子纳米酶Cu-N-C,作为漆酶模拟催化剂,在室温下高效催化吡啶和喹唑啉酮的有氧氧化合成","authors":"Hamzeh Veisi,&nbsp;Amin Rostami","doi":"10.1016/j.apsadv.2025.100758","DOIUrl":null,"url":null,"abstract":"<div><div>Nanozymes currently face challenges regarding their structure and efficiency compared to natural enzymes. Single-atom nanozymes (SAzymes) enable the optimal utilization of metal atoms and the capability to surpass intrinsic limitations. Herein, we synthesized a novel laccase-mimicking nanozyme based on copper single atoms anchored on N-doped carbon (Cu-N-C) using a precursor mixture of 2-methylimidazole, zinc nitrate, and copper(II) nitrate. The synthesized SAzyme was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Inductively coupled plasma optical emission spectroscopy (ICP-OES), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Additionally, the Cu-N-C SAzyme, featuring spherical particles, exhibited a mesoporous structure with a high surface area of 321.14 m<sup>2</sup>/g as measured by BET, an average pore size of 1.29 nm, and a pore volume of 1.25 cm<sup>3</sup>/g. Cu-N-C combines the benefits of heterogeneous catalysts, such as easy separation and reusability, with those of homogeneous catalysts, including high activity and reproducibility. We report the first application of a Cu-N-C/DDQ/O₂ cooperative catalytic system for the efficient oxidation of 1,4-dihydropyridines to pyridines (85–96 % yield) and 2,3-dihydroquinazolinones to quinazolinones (83–96 % yield) in water/acetonitrile as a solvent at room temperature.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100758"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a novel highly active single-atom nanozyme Cu-N-C with high surface area as a laccase-mimicking catalyst for the efficient catalytic aerobic oxidative synthesis of pyridines and quinazolinones at room temperature\",\"authors\":\"Hamzeh Veisi,&nbsp;Amin Rostami\",\"doi\":\"10.1016/j.apsadv.2025.100758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanozymes currently face challenges regarding their structure and efficiency compared to natural enzymes. Single-atom nanozymes (SAzymes) enable the optimal utilization of metal atoms and the capability to surpass intrinsic limitations. Herein, we synthesized a novel laccase-mimicking nanozyme based on copper single atoms anchored on N-doped carbon (Cu-N-C) using a precursor mixture of 2-methylimidazole, zinc nitrate, and copper(II) nitrate. The synthesized SAzyme was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Inductively coupled plasma optical emission spectroscopy (ICP-OES), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Additionally, the Cu-N-C SAzyme, featuring spherical particles, exhibited a mesoporous structure with a high surface area of 321.14 m<sup>2</sup>/g as measured by BET, an average pore size of 1.29 nm, and a pore volume of 1.25 cm<sup>3</sup>/g. Cu-N-C combines the benefits of heterogeneous catalysts, such as easy separation and reusability, with those of homogeneous catalysts, including high activity and reproducibility. We report the first application of a Cu-N-C/DDQ/O₂ cooperative catalytic system for the efficient oxidation of 1,4-dihydropyridines to pyridines (85–96 % yield) and 2,3-dihydroquinazolinones to quinazolinones (83–96 % yield) in water/acetonitrile as a solvent at room temperature.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"27 \",\"pages\":\"Article 100758\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925000662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与天然酶相比,纳米酶目前在结构和效率方面面临挑战。单原子纳米酶(SAzymes)使金属原子的最佳利用和超越内在限制的能力成为可能。本文采用2-甲基咪唑、硝酸锌和硝酸铜的前驱体混合物,合成了一种基于铜单原子锚定在n掺杂碳(Cu-N-C)上的新型漆酶模拟纳米酶。对合成的SAzyme进行了各种表征技术,包括傅里叶变换红外光谱(FT-IR)、高分辨率透射电子显微镜(HRTEM)、x射线衍射(XRD)、透射电子显微镜(TEM)、布鲁诺尔-埃米特-泰勒(BET)、电感耦合等离子体光学发射光谱(ICP-OES)、扫描电子显微镜(SEM)和能量色散x射线光谱(EDX)。Cu-N-C SAzyme为球形颗粒,具有介孔结构,BET测得其比表面积为321.14 m2/g,平均孔径为1.29 nm,孔体积为1.25 cm3/g。Cu-N-C结合了多相催化剂的优点,如易于分离和可重复使用,以及均相催化剂的优点,包括高活性和可重复性。本文首次应用Cu-N-C/DDQ/O₂协同催化体系,在室温条件下以水/乙腈为溶剂,将1,4-二氢吡啶高效氧化为吡啶(产率85 - 96%),2,3-二氢喹唑啉酮高效氧化为喹唑啉酮(产率83 - 96%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of a novel highly active single-atom nanozyme Cu-N-C with high surface area as a laccase-mimicking catalyst for the efficient catalytic aerobic oxidative synthesis of pyridines and quinazolinones at room temperature
Nanozymes currently face challenges regarding their structure and efficiency compared to natural enzymes. Single-atom nanozymes (SAzymes) enable the optimal utilization of metal atoms and the capability to surpass intrinsic limitations. Herein, we synthesized a novel laccase-mimicking nanozyme based on copper single atoms anchored on N-doped carbon (Cu-N-C) using a precursor mixture of 2-methylimidazole, zinc nitrate, and copper(II) nitrate. The synthesized SAzyme was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Inductively coupled plasma optical emission spectroscopy (ICP-OES), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Additionally, the Cu-N-C SAzyme, featuring spherical particles, exhibited a mesoporous structure with a high surface area of 321.14 m2/g as measured by BET, an average pore size of 1.29 nm, and a pore volume of 1.25 cm3/g. Cu-N-C combines the benefits of heterogeneous catalysts, such as easy separation and reusability, with those of homogeneous catalysts, including high activity and reproducibility. We report the first application of a Cu-N-C/DDQ/O₂ cooperative catalytic system for the efficient oxidation of 1,4-dihydropyridines to pyridines (85–96 % yield) and 2,3-dihydroquinazolinones to quinazolinones (83–96 % yield) in water/acetonitrile as a solvent at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信