Anna Weatherburn , Callum Montgomery , George Scott , Calvin Ralph , John Girkin , Cormac McGarrigle , Alistair McIlhagger , Edward Archer , Stefan Szyniszewski
{"title":"增强抗冲击性能的仿生聚丙烯-碳复合三维编织复合材料","authors":"Anna Weatherburn , Callum Montgomery , George Scott , Calvin Ralph , John Girkin , Cormac McGarrigle , Alistair McIlhagger , Edward Archer , Stefan Szyniszewski","doi":"10.1016/j.compstruct.2025.119177","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a nacre-inspired carbon-polypropylene 3D woven composite is developed. The biomimetic ‘brick-and-mortar’ design is implemented by interlacing softer polypropylene yarns with brittle carbon fibres. This novel composite was benchmarked against a standard carbon fibre 3D woven composite with identical weave architecture, examining tensile properties, impact resistance, and shear strength. The comparative analysis was supported by micrographs and <span><math><mi>μ</mi></math></span>CT scans. Results showed that the hybrid composite absorbed 16% more impact energy in the weft direction than its purely carbon counterpart. The presence of polypropylene yarns increased crimp within the weave contributing to reduced tensile and shear properties. The study identifies the bulk factor of polypropylene yarns as critical in minimising crimp and structural flaws in the hybrid design. In summary, this work presents a nature-inspired hybrid composite, with an increased impact resistance but with trade-offs in tensile and shear properties.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"366 ","pages":"Article 119177"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic polypropylene-carbon intra-ply hybrid 3D woven composite with enhanced impact resistance\",\"authors\":\"Anna Weatherburn , Callum Montgomery , George Scott , Calvin Ralph , John Girkin , Cormac McGarrigle , Alistair McIlhagger , Edward Archer , Stefan Szyniszewski\",\"doi\":\"10.1016/j.compstruct.2025.119177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a nacre-inspired carbon-polypropylene 3D woven composite is developed. The biomimetic ‘brick-and-mortar’ design is implemented by interlacing softer polypropylene yarns with brittle carbon fibres. This novel composite was benchmarked against a standard carbon fibre 3D woven composite with identical weave architecture, examining tensile properties, impact resistance, and shear strength. The comparative analysis was supported by micrographs and <span><math><mi>μ</mi></math></span>CT scans. Results showed that the hybrid composite absorbed 16% more impact energy in the weft direction than its purely carbon counterpart. The presence of polypropylene yarns increased crimp within the weave contributing to reduced tensile and shear properties. The study identifies the bulk factor of polypropylene yarns as critical in minimising crimp and structural flaws in the hybrid design. In summary, this work presents a nature-inspired hybrid composite, with an increased impact resistance but with trade-offs in tensile and shear properties.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"366 \",\"pages\":\"Article 119177\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325003423\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325003423","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Biomimetic polypropylene-carbon intra-ply hybrid 3D woven composite with enhanced impact resistance
In this study, a nacre-inspired carbon-polypropylene 3D woven composite is developed. The biomimetic ‘brick-and-mortar’ design is implemented by interlacing softer polypropylene yarns with brittle carbon fibres. This novel composite was benchmarked against a standard carbon fibre 3D woven composite with identical weave architecture, examining tensile properties, impact resistance, and shear strength. The comparative analysis was supported by micrographs and CT scans. Results showed that the hybrid composite absorbed 16% more impact energy in the weft direction than its purely carbon counterpart. The presence of polypropylene yarns increased crimp within the weave contributing to reduced tensile and shear properties. The study identifies the bulk factor of polypropylene yarns as critical in minimising crimp and structural flaws in the hybrid design. In summary, this work presents a nature-inspired hybrid composite, with an increased impact resistance but with trade-offs in tensile and shear properties.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.