基于计算机视觉和深度学习的台式数控铣床自主工艺优化

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Filippo Danilo Michelacci, Gyuhyeon Han, Sanha Kim
{"title":"基于计算机视觉和深度学习的台式数控铣床自主工艺优化","authors":"Filippo Danilo Michelacci,&nbsp;Gyuhyeon Han,&nbsp;Sanha Kim","doi":"10.1016/j.cirpj.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>CNC milling machines offer precision manufacturing across diverse materials but require off-machine quality checks and trial-and-error parameters selection. This study proposes a system that autonomously adjusts such parameters to improve surface quality and productivity. Composed of a deep learning-based monitoring apparatus capable of on-site surface roughness prediction with a 3.6 % mean error and a dataset of optimized parameters generated via multi-objective Bayesian optimization in only eleven attempts, it successfully conducted a fully autonomous trochoidal slotting operation, improving the final roughness by 36 %. The system, with further refinements, can be industrialized making autonomous machining accessible even to small and medium enterprises.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"60 ","pages":"Pages 153-164"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous process optimization of a tabletop CNC milling machine using computer vision and deep learning\",\"authors\":\"Filippo Danilo Michelacci,&nbsp;Gyuhyeon Han,&nbsp;Sanha Kim\",\"doi\":\"10.1016/j.cirpj.2025.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CNC milling machines offer precision manufacturing across diverse materials but require off-machine quality checks and trial-and-error parameters selection. This study proposes a system that autonomously adjusts such parameters to improve surface quality and productivity. Composed of a deep learning-based monitoring apparatus capable of on-site surface roughness prediction with a 3.6 % mean error and a dataset of optimized parameters generated via multi-objective Bayesian optimization in only eleven attempts, it successfully conducted a fully autonomous trochoidal slotting operation, improving the final roughness by 36 %. The system, with further refinements, can be industrialized making autonomous machining accessible even to small and medium enterprises.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"60 \",\"pages\":\"Pages 153-164\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581725000604\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000604","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

数控铣床提供各种材料的精密制造,但需要机外质量检查和试错参数选择。本研究提出了一个系统,自主调整这些参数,以提高表面质量和生产率。它由一个基于深度学习的监测设备组成,该设备能够以3.6%的平均误差预测现场表面粗糙度,并且通过多目标贝叶斯优化仅11次尝试生成优化参数数据集,成功地进行了完全自主的齿面开槽操作,将最终粗糙度提高了36%。该系统经过进一步的改进,可以实现工业化,甚至中小型企业也可以实现自主加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous process optimization of a tabletop CNC milling machine using computer vision and deep learning
CNC milling machines offer precision manufacturing across diverse materials but require off-machine quality checks and trial-and-error parameters selection. This study proposes a system that autonomously adjusts such parameters to improve surface quality and productivity. Composed of a deep learning-based monitoring apparatus capable of on-site surface roughness prediction with a 3.6 % mean error and a dataset of optimized parameters generated via multi-objective Bayesian optimization in only eleven attempts, it successfully conducted a fully autonomous trochoidal slotting operation, improving the final roughness by 36 %. The system, with further refinements, can be industrialized making autonomous machining accessible even to small and medium enterprises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信