Ahmad Raza Usmani , Mohammad Sadra Rajabi , Aanuoluwapo Ojelade , Sunwook Kim , Carisa Harris-Adamson , Alan Barr , Maury A. Nussbaum
{"title":"被动的背部支持外骨骼不能有效地减少物理需求在模拟地砖","authors":"Ahmad Raza Usmani , Mohammad Sadra Rajabi , Aanuoluwapo Ojelade , Sunwook Kim , Carisa Harris-Adamson , Alan Barr , Maury A. Nussbaum","doi":"10.1016/j.apergo.2025.104549","DOIUrl":null,"url":null,"abstract":"<div><div>Back-support exoskeletons (BSEs) have the potential to reduce physical demands during many occupational tasks, but their effectiveness in flooring work remains underexplored. Eighteen participants performed simulated floor tiling work under three intervention conditions (HeroWear Apex™ = HW, Laevo Flex™ = LV, and no device = ND), across two tile sizes (small vs. large), and two task types (tiling vs. grouting). HW use increased back muscle activation by ∼13–44 % compared to ND, while LV led to minimal changes. Some participants reported concerns with both BSEs, including movement restrictions, discomfort, and skin irritation. Significant interaction effects of intervention and tile size on muscle activity and subjective outcomes suggest the importance of considering task-specificity in BSE evaluations. Overall, the BSEs examined here did not effectively reduce physical demands during simulated floor tiling. Although we assessed BSE effects on tiling, our findings could also guide future implementation of exoskeletons in other similar construction tasks.</div></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"128 ","pages":"Article 104549"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive back support exoskeletons do not effectively reduce physical demands during simulated floor tiling\",\"authors\":\"Ahmad Raza Usmani , Mohammad Sadra Rajabi , Aanuoluwapo Ojelade , Sunwook Kim , Carisa Harris-Adamson , Alan Barr , Maury A. Nussbaum\",\"doi\":\"10.1016/j.apergo.2025.104549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Back-support exoskeletons (BSEs) have the potential to reduce physical demands during many occupational tasks, but their effectiveness in flooring work remains underexplored. Eighteen participants performed simulated floor tiling work under three intervention conditions (HeroWear Apex™ = HW, Laevo Flex™ = LV, and no device = ND), across two tile sizes (small vs. large), and two task types (tiling vs. grouting). HW use increased back muscle activation by ∼13–44 % compared to ND, while LV led to minimal changes. Some participants reported concerns with both BSEs, including movement restrictions, discomfort, and skin irritation. Significant interaction effects of intervention and tile size on muscle activity and subjective outcomes suggest the importance of considering task-specificity in BSE evaluations. Overall, the BSEs examined here did not effectively reduce physical demands during simulated floor tiling. Although we assessed BSE effects on tiling, our findings could also guide future implementation of exoskeletons in other similar construction tasks.</div></div>\",\"PeriodicalId\":55502,\"journal\":{\"name\":\"Applied Ergonomics\",\"volume\":\"128 \",\"pages\":\"Article 104549\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003687025000857\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687025000857","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Passive back support exoskeletons do not effectively reduce physical demands during simulated floor tiling
Back-support exoskeletons (BSEs) have the potential to reduce physical demands during many occupational tasks, but their effectiveness in flooring work remains underexplored. Eighteen participants performed simulated floor tiling work under three intervention conditions (HeroWear Apex™ = HW, Laevo Flex™ = LV, and no device = ND), across two tile sizes (small vs. large), and two task types (tiling vs. grouting). HW use increased back muscle activation by ∼13–44 % compared to ND, while LV led to minimal changes. Some participants reported concerns with both BSEs, including movement restrictions, discomfort, and skin irritation. Significant interaction effects of intervention and tile size on muscle activity and subjective outcomes suggest the importance of considering task-specificity in BSE evaluations. Overall, the BSEs examined here did not effectively reduce physical demands during simulated floor tiling. Although we assessed BSE effects on tiling, our findings could also guide future implementation of exoskeletons in other similar construction tasks.
期刊介绍:
Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.