一种改进算子范数错误率的无参数二位协方差估计器

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Junren Chen , Michael K. Ng
{"title":"一种改进算子范数错误率的无参数二位协方差估计器","authors":"Junren Chen ,&nbsp;Michael K. Ng","doi":"10.1016/j.acha.2025.101774","DOIUrl":null,"url":null,"abstract":"<div><div>A covariance matrix estimator using two bits per entry was recently developed by Dirksen et al. (2022) <span><span>[11]</span></span>. The estimator achieves near minimax operator norm rate for general sub-Gaussian distributions, but also suffers from two downsides: theoretically, there is an essential gap on operator norm error between their estimator and sample covariance when the diagonal of the covariance matrix is dominated by only a few entries; practically, its performance heavily relies on the dithering scale, which needs to be tuned according to some unknown parameters. In this work, we propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues. Unlike the sign quantizer associated with uniform dither in Dirksen et al., we adopt a triangular dither prior to a 2-bit quantizer inspired by the multi-bit uniform quantizer. By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate that depends on the effective rank of the underlying covariance matrix rather than the ambient dimension, which is optimal up to logarithmic factors. Moreover, our proposed method eliminates the need of <em>any</em> tuning parameter, as the dithering scales are entirely determined by the data. While our estimator requires a pass of all unquantized samples to determine the dithering scales, it can be adapted to the online setting where the samples arise sequentially. Experimental results are provided to demonstrate the advantages of our estimators over the existing ones.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"78 ","pages":"Article 101774"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parameter-free two-bit covariance estimator with improved operator norm error rate\",\"authors\":\"Junren Chen ,&nbsp;Michael K. Ng\",\"doi\":\"10.1016/j.acha.2025.101774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A covariance matrix estimator using two bits per entry was recently developed by Dirksen et al. (2022) <span><span>[11]</span></span>. The estimator achieves near minimax operator norm rate for general sub-Gaussian distributions, but also suffers from two downsides: theoretically, there is an essential gap on operator norm error between their estimator and sample covariance when the diagonal of the covariance matrix is dominated by only a few entries; practically, its performance heavily relies on the dithering scale, which needs to be tuned according to some unknown parameters. In this work, we propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues. Unlike the sign quantizer associated with uniform dither in Dirksen et al., we adopt a triangular dither prior to a 2-bit quantizer inspired by the multi-bit uniform quantizer. By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate that depends on the effective rank of the underlying covariance matrix rather than the ambient dimension, which is optimal up to logarithmic factors. Moreover, our proposed method eliminates the need of <em>any</em> tuning parameter, as the dithering scales are entirely determined by the data. While our estimator requires a pass of all unquantized samples to determine the dithering scales, it can be adapted to the online setting where the samples arise sequentially. Experimental results are provided to demonstrate the advantages of our estimators over the existing ones.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"78 \",\"pages\":\"Article 101774\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Dirksen等人(2022)最近开发了一种协方差矩阵估计器,每个条目使用两个比特。对于一般的亚高斯分布,该估计器实现了接近极大极小算子范数率,但也存在两个缺点:理论上,当协方差矩阵的对角线仅由少数项占主导时,其估计器与样本协方差之间的算子范数误差存在本质差距;实际上,它的性能很大程度上依赖于抖动尺度,抖动尺度需要根据一些未知参数进行调整。在这项工作中,我们提出了一个新的2位协方差矩阵估计器,同时解决了这两个问题。与Dirksen等人中与均匀抖动相关的符号量化器不同,我们在受多位均匀量化器启发的2位量化器之前采用了三角形抖动。通过使用不同条目的抖动尺度,我们的估计器具有改进的算子范数错误率,该错误率取决于底层协方差矩阵的有效秩,而不是环境维度,这是最优的,直到对数因子。此外,我们提出的方法不需要任何调优参数,因为抖动尺度完全由数据决定。虽然我们的估计器需要通过所有未量化的样本来确定抖动尺度,但它可以适应样本顺序出现的在线设置。实验结果证明了我们的估计器相对于现有估计器的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parameter-free two-bit covariance estimator with improved operator norm error rate
A covariance matrix estimator using two bits per entry was recently developed by Dirksen et al. (2022) [11]. The estimator achieves near minimax operator norm rate for general sub-Gaussian distributions, but also suffers from two downsides: theoretically, there is an essential gap on operator norm error between their estimator and sample covariance when the diagonal of the covariance matrix is dominated by only a few entries; practically, its performance heavily relies on the dithering scale, which needs to be tuned according to some unknown parameters. In this work, we propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues. Unlike the sign quantizer associated with uniform dither in Dirksen et al., we adopt a triangular dither prior to a 2-bit quantizer inspired by the multi-bit uniform quantizer. By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate that depends on the effective rank of the underlying covariance matrix rather than the ambient dimension, which is optimal up to logarithmic factors. Moreover, our proposed method eliminates the need of any tuning parameter, as the dithering scales are entirely determined by the data. While our estimator requires a pass of all unquantized samples to determine the dithering scales, it can be adapted to the online setting where the samples arise sequentially. Experimental results are provided to demonstrate the advantages of our estimators over the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信