Paul Takyi-Aninakwa , Shunli Wang , Guangchen Liu , Carlos Fernandez , Wenbin Kang , Yingze Song
{"title":"为高性能锂离子电池状态监测设计的深度学习框架","authors":"Paul Takyi-Aninakwa , Shunli Wang , Guangchen Liu , Carlos Fernandez , Wenbin Kang , Yingze Song","doi":"10.1016/j.rser.2025.115803","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"218 ","pages":"Article 115803"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning framework designed for high-performance lithium-ion batteries state monitoring\",\"authors\":\"Paul Takyi-Aninakwa , Shunli Wang , Guangchen Liu , Carlos Fernandez , Wenbin Kang , Yingze Song\",\"doi\":\"10.1016/j.rser.2025.115803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"218 \",\"pages\":\"Article 115803\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032125004769\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125004769","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep learning framework designed for high-performance lithium-ion batteries state monitoring
Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.