一个新的扩展对数Kumaraswamy模型的精算和各种熵度量:性质和应用

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Naif Alotaibi
{"title":"一个新的扩展对数Kumaraswamy模型的精算和各种熵度量:性质和应用","authors":"Naif Alotaibi","doi":"10.1016/j.aej.2025.04.039","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a novel extension of the log Kumaraswamy distribution, termed Marshall Olkin log Kumaraswamy <span><math><mrow><mo>(</mo><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>)</mo></mrow></math></span>. The mathematical and statistical characteristics of the suggested distribution are constructed, encompassing explicit formulations for quantiles, moments, conditional moments, as well as the Bonferroni and Lorenz curves. Five estimation methods for the model parameters have been derived. Entropy measures uncertainty and disorder in systems, playing a crucial role in fields such as statistics, economics, physics, and computer science. Rényi entropy is widely used in applications like statistical inference and pattern recognition. Accordingly, five entropy measures have been obtained for the <span><math><mrow><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span> distribution A Monte Carlo simulation study is conducted to assess the efficacy of these estimators. Additionally, certain actuarial metrics, including value at risk and tail value at risk, are computed. Ultimately, applications of the model to actual data sets are provided to demonstrate the applicability and utility of the <span><math><mrow><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span> distribution.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"126 ","pages":"Pages 377-392"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actuarial and various entropy measures for a new extended log Kumaraswamy model: Properties and applications\",\"authors\":\"Naif Alotaibi\",\"doi\":\"10.1016/j.aej.2025.04.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces a novel extension of the log Kumaraswamy distribution, termed Marshall Olkin log Kumaraswamy <span><math><mrow><mo>(</mo><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>)</mo></mrow></math></span>. The mathematical and statistical characteristics of the suggested distribution are constructed, encompassing explicit formulations for quantiles, moments, conditional moments, as well as the Bonferroni and Lorenz curves. Five estimation methods for the model parameters have been derived. Entropy measures uncertainty and disorder in systems, playing a crucial role in fields such as statistics, economics, physics, and computer science. Rényi entropy is widely used in applications like statistical inference and pattern recognition. Accordingly, five entropy measures have been obtained for the <span><math><mrow><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span> distribution A Monte Carlo simulation study is conducted to assess the efficacy of these estimators. Additionally, certain actuarial metrics, including value at risk and tail value at risk, are computed. Ultimately, applications of the model to actual data sets are provided to demonstrate the applicability and utility of the <span><math><mrow><mi>M</mi><mi>O</mi><mi>L</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span> distribution.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"126 \",\"pages\":\"Pages 377-392\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005253\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了对数Kumaraswamy分布的一个新的扩展,称为Marshall Olkin对数Kumaraswamy (MOLkw)。构造了建议分布的数学和统计特征,包括分位数,矩,条件矩以及Bonferroni和Lorenz曲线的显式公式。给出了模型参数的五种估计方法。熵衡量系统中的不确定性和无序性,在统计学、经济学、物理学和计算机科学等领域发挥着至关重要的作用。rsamnyi熵被广泛应用于统计推断和模式识别等领域。据此,得到了MOLkw分布的五种熵测度,并进行了蒙特卡罗模拟研究,以评估这些估计量的有效性。此外,还计算了某些精算度量,包括风险值和风险尾值。最后,给出了模型在实际数据集上的应用,以证明MOLkw分布的适用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actuarial and various entropy measures for a new extended log Kumaraswamy model: Properties and applications
This article introduces a novel extension of the log Kumaraswamy distribution, termed Marshall Olkin log Kumaraswamy (MOLkw). The mathematical and statistical characteristics of the suggested distribution are constructed, encompassing explicit formulations for quantiles, moments, conditional moments, as well as the Bonferroni and Lorenz curves. Five estimation methods for the model parameters have been derived. Entropy measures uncertainty and disorder in systems, playing a crucial role in fields such as statistics, economics, physics, and computer science. Rényi entropy is widely used in applications like statistical inference and pattern recognition. Accordingly, five entropy measures have been obtained for the MOLkw distribution A Monte Carlo simulation study is conducted to assess the efficacy of these estimators. Additionally, certain actuarial metrics, including value at risk and tail value at risk, are computed. Ultimately, applications of the model to actual data sets are provided to demonstrate the applicability and utility of the MOLkw distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信