用于高性能钙钛矿太阳能电池和微型组件的氧依赖溅射氧化镍

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling Kai Lee, Nengxu Li, Xi Wang, Haoming Liang, Jinxi Chen, Renjun Guo, Zijing Dong, Zhuojie Shi, Tao Wang, Donny Lai, Shunchang Liu, Zhengrong Jia, Yuduan Wang, Xiao Guo, Jia Li, Qilin Zhou, Armin Gerhard Aberle and Yi Hou*, 
{"title":"用于高性能钙钛矿太阳能电池和微型组件的氧依赖溅射氧化镍","authors":"Ling Kai Lee,&nbsp;Nengxu Li,&nbsp;Xi Wang,&nbsp;Haoming Liang,&nbsp;Jinxi Chen,&nbsp;Renjun Guo,&nbsp;Zijing Dong,&nbsp;Zhuojie Shi,&nbsp;Tao Wang,&nbsp;Donny Lai,&nbsp;Shunchang Liu,&nbsp;Zhengrong Jia,&nbsp;Yuduan Wang,&nbsp;Xiao Guo,&nbsp;Jia Li,&nbsp;Qilin Zhou,&nbsp;Armin Gerhard Aberle and Yi Hou*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0236510.1021/acsmaterialslett.4c02365","DOIUrl":null,"url":null,"abstract":"<p >Inverted perovskite solar cells (PSCs) with nickel oxide (NiO<sub><i>x</i></sub>) as the hole transport layer have shown considerable potential for achieving high-performance photovoltaic devices. Adopting industrially compatible deposition technologies is crucial for their commercialization. In this study, we utilize pulsed DC reactive sputtering, an industrially established technique to reproducibly deposit NiO<sub><i>x</i></sub> films. By precisely controlling the oxygen doping ratio during the sputtering process, we systematically explore the intrinsic optical and electronic properties of the NiO<sub><i>x</i></sub> films. Additionally, we investigate the oxygen-dependent interfacial reactions between NiO<sub><i>x</i></sub> and perovskite, and the optimized devices achieve remarkable conversion efficiencies of 23.96% and 21.14% for 1.0 cm<sup>2</sup> and 20 cm<sup>2</sup> aperture areas, the highest values for large-area PSCs using scalable NiO<sub><i>x</i></sub> deposition. Furthermore, these devices demonstrate excellent operational stability, with negligible efficiency decline when operating under maximum power point tracking for 845 h. The successful implementation of this industrial deposition brings PCSs closer to commercialization.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 5","pages":"1698–1706 1698–1706"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Dependent Sputtered NiOx for High-Performance Perovskite Solar Cells and Minimodules\",\"authors\":\"Ling Kai Lee,&nbsp;Nengxu Li,&nbsp;Xi Wang,&nbsp;Haoming Liang,&nbsp;Jinxi Chen,&nbsp;Renjun Guo,&nbsp;Zijing Dong,&nbsp;Zhuojie Shi,&nbsp;Tao Wang,&nbsp;Donny Lai,&nbsp;Shunchang Liu,&nbsp;Zhengrong Jia,&nbsp;Yuduan Wang,&nbsp;Xiao Guo,&nbsp;Jia Li,&nbsp;Qilin Zhou,&nbsp;Armin Gerhard Aberle and Yi Hou*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0236510.1021/acsmaterialslett.4c02365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inverted perovskite solar cells (PSCs) with nickel oxide (NiO<sub><i>x</i></sub>) as the hole transport layer have shown considerable potential for achieving high-performance photovoltaic devices. Adopting industrially compatible deposition technologies is crucial for their commercialization. In this study, we utilize pulsed DC reactive sputtering, an industrially established technique to reproducibly deposit NiO<sub><i>x</i></sub> films. By precisely controlling the oxygen doping ratio during the sputtering process, we systematically explore the intrinsic optical and electronic properties of the NiO<sub><i>x</i></sub> films. Additionally, we investigate the oxygen-dependent interfacial reactions between NiO<sub><i>x</i></sub> and perovskite, and the optimized devices achieve remarkable conversion efficiencies of 23.96% and 21.14% for 1.0 cm<sup>2</sup> and 20 cm<sup>2</sup> aperture areas, the highest values for large-area PSCs using scalable NiO<sub><i>x</i></sub> deposition. Furthermore, these devices demonstrate excellent operational stability, with negligible efficiency decline when operating under maximum power point tracking for 845 h. The successful implementation of this industrial deposition brings PCSs closer to commercialization.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 5\",\"pages\":\"1698–1706 1698–1706\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02365\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02365","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以氧化镍(NiOx)为空穴传输层的倒钙钛矿太阳能电池(PSCs)在实现高性能光伏器件方面显示出相当大的潜力。采用工业兼容的沉积技术对其商业化至关重要。在这项研究中,我们利用脉冲直流反应溅射,一种工业上建立的技术来重复沉积NiOx薄膜。通过精确控制溅射过程中的氧掺杂比,我们系统地探索了NiOx薄膜的内在光学和电子特性。此外,我们研究了NiOx与钙钛矿之间的氧依赖界面反应,优化后的器件在1.0 cm2和20 cm2孔径面积下的转换效率分别为23.96%和21.14%,这是采用可扩展NiOx沉积的大面积PSCs的最高值。此外,这些器件表现出出色的运行稳定性,当在最大功率点跟踪下运行845小时时,效率下降可以忽略不计。这种工业沉积的成功实施使pcs更接近商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen-Dependent Sputtered NiOx for High-Performance Perovskite Solar Cells and Minimodules

Oxygen-Dependent Sputtered NiOx for High-Performance Perovskite Solar Cells and Minimodules

Inverted perovskite solar cells (PSCs) with nickel oxide (NiOx) as the hole transport layer have shown considerable potential for achieving high-performance photovoltaic devices. Adopting industrially compatible deposition technologies is crucial for their commercialization. In this study, we utilize pulsed DC reactive sputtering, an industrially established technique to reproducibly deposit NiOx films. By precisely controlling the oxygen doping ratio during the sputtering process, we systematically explore the intrinsic optical and electronic properties of the NiOx films. Additionally, we investigate the oxygen-dependent interfacial reactions between NiOx and perovskite, and the optimized devices achieve remarkable conversion efficiencies of 23.96% and 21.14% for 1.0 cm2 and 20 cm2 aperture areas, the highest values for large-area PSCs using scalable NiOx deposition. Furthermore, these devices demonstrate excellent operational stability, with negligible efficiency decline when operating under maximum power point tracking for 845 h. The successful implementation of this industrial deposition brings PCSs closer to commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信