{"title":"将废食用油转化为锌皂:一种增强天然橡胶复合材料的多功能添加剂的可持续方法","authors":"Charoen Nakason, Pornpot Nuthong, Azizon Kaesaman","doi":"10.1007/s10965-025-04392-2","DOIUrl":null,"url":null,"abstract":"<div><p>Recycled or used cooking oil (UCO) was utilized as a raw material to synthesize zinc soaps, which were subsequently employed as processing aids in silica-filled natural rubber (NR) compounds. Their performance was compared with zinc soaps derived from coconut and palm oils, as well as a commercial processing aid. The results revealed that zinc soaps significantly reduced Mooney viscosity and enhanced stress relaxation rates in NR compounds, attributed to their lubricating and plasticizing properties, which improved flowability and processability. These zinc soaps also influenced curing characteristics, resulting in higher torque differences and crosslink densities, thereby enhancing mechanical strength. Furthermore, the incorporation of in-house synthesized zinc soaps shortened cure and scorch times while accelerating the cure rate, underscoring their synergistic role in promoting crosslinking reactions. Additionally, these zinc soaps improved the dispersion of solid particles within the NR matrix, fostering greater uniformity and optimizing compound properties. The inclusion of zinc soaps also boosted rubber elasticity, as indicated by a higher rubber index (RI), and enhanced thermal stability, evidenced by extended <i>T</i><sub><i>90</i></sub> values, higher peak positions, and larger peak areas in stress relaxation profiles.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming waste cooking oil into zinc soap: a sustainable approach to multifunctional additives for enhancing natural rubber composites\",\"authors\":\"Charoen Nakason, Pornpot Nuthong, Azizon Kaesaman\",\"doi\":\"10.1007/s10965-025-04392-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recycled or used cooking oil (UCO) was utilized as a raw material to synthesize zinc soaps, which were subsequently employed as processing aids in silica-filled natural rubber (NR) compounds. Their performance was compared with zinc soaps derived from coconut and palm oils, as well as a commercial processing aid. The results revealed that zinc soaps significantly reduced Mooney viscosity and enhanced stress relaxation rates in NR compounds, attributed to their lubricating and plasticizing properties, which improved flowability and processability. These zinc soaps also influenced curing characteristics, resulting in higher torque differences and crosslink densities, thereby enhancing mechanical strength. Furthermore, the incorporation of in-house synthesized zinc soaps shortened cure and scorch times while accelerating the cure rate, underscoring their synergistic role in promoting crosslinking reactions. Additionally, these zinc soaps improved the dispersion of solid particles within the NR matrix, fostering greater uniformity and optimizing compound properties. The inclusion of zinc soaps also boosted rubber elasticity, as indicated by a higher rubber index (RI), and enhanced thermal stability, evidenced by extended <i>T</i><sub><i>90</i></sub> values, higher peak positions, and larger peak areas in stress relaxation profiles.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-025-04392-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04392-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Transforming waste cooking oil into zinc soap: a sustainable approach to multifunctional additives for enhancing natural rubber composites
Recycled or used cooking oil (UCO) was utilized as a raw material to synthesize zinc soaps, which were subsequently employed as processing aids in silica-filled natural rubber (NR) compounds. Their performance was compared with zinc soaps derived from coconut and palm oils, as well as a commercial processing aid. The results revealed that zinc soaps significantly reduced Mooney viscosity and enhanced stress relaxation rates in NR compounds, attributed to their lubricating and plasticizing properties, which improved flowability and processability. These zinc soaps also influenced curing characteristics, resulting in higher torque differences and crosslink densities, thereby enhancing mechanical strength. Furthermore, the incorporation of in-house synthesized zinc soaps shortened cure and scorch times while accelerating the cure rate, underscoring their synergistic role in promoting crosslinking reactions. Additionally, these zinc soaps improved the dispersion of solid particles within the NR matrix, fostering greater uniformity and optimizing compound properties. The inclusion of zinc soaps also boosted rubber elasticity, as indicated by a higher rubber index (RI), and enhanced thermal stability, evidenced by extended T90 values, higher peak positions, and larger peak areas in stress relaxation profiles.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.