Ali N. A. Koam, Muhammad Usamah Majeed, Shahid Zaman, Ali Ahmad, Ibtisam Masmali, Abdullah Ali H. Ahmadini
{"title":"多环芳烃理化特性建模的机器学习方法","authors":"Ali N. A. Koam, Muhammad Usamah Majeed, Shahid Zaman, Ali Ahmad, Ibtisam Masmali, Abdullah Ali H. Ahmadini","doi":"10.1140/epje/s10189-025-00487-2","DOIUrl":null,"url":null,"abstract":"<p>Supervised machine learning methods like random forests and extreme gradient boosting plays an important role in drug development for predicting bioactivity and resolving structure-activity correlations. These approaches use topological descriptors in the study of polycyclic aromatic hydrocarbons that represent molecular structural characteristics to enhance the prediction capacity of quantitative structure–property relationships (QSPR). The objective is to identify the physoichemical properties such as density, boiling point, flash point, enthalpy, polarizability, surface tension, molar volume, molecular weight and complexity that significantly impact physicochemical attributes. The combination of machine learning and QSPR also demonstrates the potential of computational techniques in drug development. Then effective algorithms are constructed to express the link between the eccentricity-based topological indices and the physicochemical characteristics of each of the polycyclic aromatic hydrocarbons, which grows our understanding of their behavior and paves the way for future development of environmental forecasting techniques and toxicological evaluations of polycyclic aromatic hydrocarbons.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 4-5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for modeling the physiochemical characteristics of polycyclic aromatic hydrocarbons\",\"authors\":\"Ali N. A. Koam, Muhammad Usamah Majeed, Shahid Zaman, Ali Ahmad, Ibtisam Masmali, Abdullah Ali H. Ahmadini\",\"doi\":\"10.1140/epje/s10189-025-00487-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supervised machine learning methods like random forests and extreme gradient boosting plays an important role in drug development for predicting bioactivity and resolving structure-activity correlations. These approaches use topological descriptors in the study of polycyclic aromatic hydrocarbons that represent molecular structural characteristics to enhance the prediction capacity of quantitative structure–property relationships (QSPR). The objective is to identify the physoichemical properties such as density, boiling point, flash point, enthalpy, polarizability, surface tension, molar volume, molecular weight and complexity that significantly impact physicochemical attributes. The combination of machine learning and QSPR also demonstrates the potential of computational techniques in drug development. Then effective algorithms are constructed to express the link between the eccentricity-based topological indices and the physicochemical characteristics of each of the polycyclic aromatic hydrocarbons, which grows our understanding of their behavior and paves the way for future development of environmental forecasting techniques and toxicological evaluations of polycyclic aromatic hydrocarbons.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 4-5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00487-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00487-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Machine learning approaches for modeling the physiochemical characteristics of polycyclic aromatic hydrocarbons
Supervised machine learning methods like random forests and extreme gradient boosting plays an important role in drug development for predicting bioactivity and resolving structure-activity correlations. These approaches use topological descriptors in the study of polycyclic aromatic hydrocarbons that represent molecular structural characteristics to enhance the prediction capacity of quantitative structure–property relationships (QSPR). The objective is to identify the physoichemical properties such as density, boiling point, flash point, enthalpy, polarizability, surface tension, molar volume, molecular weight and complexity that significantly impact physicochemical attributes. The combination of machine learning and QSPR also demonstrates the potential of computational techniques in drug development. Then effective algorithms are constructed to express the link between the eccentricity-based topological indices and the physicochemical characteristics of each of the polycyclic aromatic hydrocarbons, which grows our understanding of their behavior and paves the way for future development of environmental forecasting techniques and toxicological evaluations of polycyclic aromatic hydrocarbons.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.