zddp衍生摩擦膜的时间依赖接触行为:粘弹性分层模型方法

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Dongze Wang, Ali Ghanbarzadeh, Nan Xu, Qingyang Liu, Gregory de Boer
{"title":"zddp衍生摩擦膜的时间依赖接触行为:粘弹性分层模型方法","authors":"Dongze Wang,&nbsp;Ali Ghanbarzadeh,&nbsp;Nan Xu,&nbsp;Qingyang Liu,&nbsp;Gregory de Boer","doi":"10.1007/s11249-025-01990-5","DOIUrl":null,"url":null,"abstract":"<div><p>The ZDDP-derived tribofilm was recently reported to be viscoelastic based on a creep experiment, where a Burgers material model mathematically represents its creep compliance. This study develops a contact model for layered materials by extending a previously established viscoelastic half-space contact model. The approach involves converting analytical frequency response functions into influence coefficients, enabling the investigation of the viscoelastic behaviour of ZDDP-derived tribofilms. The results reveal that the tribofilm exhibits a highly fluid-like response when modelled as a half-space body being in contact with a carbon steel ball during indentation or sliding. When bonded to an elastic substrate in its typical thin-film form (on the nanometre scale), the contact behaviour can still exhibit time-dependent characteristics, depending on the operating conditions. Creep and stress relaxation are observed during indentation, particularly under low loads, while high loads result in a more pronounced viscoelastic response in extremely slow-speed contacts. However, under moderate sliding speeds ranging from millimetres to meters per second, time-dependent effects become negligible, regardless of the applied load. These findings indicate that although ZDDP-derived tribofilms exhibit significant viscoelasticity, their behaviour in practical applications generally resembles that of a soft elastic layer, as typical sliding speeds fall outside the range where pronounced time-dependent effects occur.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-025-01990-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-Dependent Contact Behaviour of ZDDP-Derived Tribofilms: A Viscoelastic Layered Model Approach\",\"authors\":\"Dongze Wang,&nbsp;Ali Ghanbarzadeh,&nbsp;Nan Xu,&nbsp;Qingyang Liu,&nbsp;Gregory de Boer\",\"doi\":\"10.1007/s11249-025-01990-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ZDDP-derived tribofilm was recently reported to be viscoelastic based on a creep experiment, where a Burgers material model mathematically represents its creep compliance. This study develops a contact model for layered materials by extending a previously established viscoelastic half-space contact model. The approach involves converting analytical frequency response functions into influence coefficients, enabling the investigation of the viscoelastic behaviour of ZDDP-derived tribofilms. The results reveal that the tribofilm exhibits a highly fluid-like response when modelled as a half-space body being in contact with a carbon steel ball during indentation or sliding. When bonded to an elastic substrate in its typical thin-film form (on the nanometre scale), the contact behaviour can still exhibit time-dependent characteristics, depending on the operating conditions. Creep and stress relaxation are observed during indentation, particularly under low loads, while high loads result in a more pronounced viscoelastic response in extremely slow-speed contacts. However, under moderate sliding speeds ranging from millimetres to meters per second, time-dependent effects become negligible, regardless of the applied load. These findings indicate that although ZDDP-derived tribofilms exhibit significant viscoelasticity, their behaviour in practical applications generally resembles that of a soft elastic layer, as typical sliding speeds fall outside the range where pronounced time-dependent effects occur.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-025-01990-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-025-01990-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01990-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

根据最近的一项蠕变实验,zddp衍生的摩擦膜具有粘弹性,其中Burgers材料模型在数学上表示了其蠕变顺应性。本研究通过扩展先前建立的粘弹性半空间接触模型,建立了层状材料的接触模型。该方法包括将解析频响函数转换为影响系数,从而能够研究zddp衍生摩擦膜的粘弹性行为。结果表明,当将摩擦膜模拟为半空间体与碳钢球在压痕或滑动过程中接触时,摩擦膜表现出高度流体样的响应。当以典型的薄膜形式(在纳米尺度上)与弹性衬底结合时,根据操作条件,接触行为仍然可以表现出与时间相关的特征。在压痕过程中观察到蠕变和应力松弛,特别是在低载荷下,而高载荷在极慢速度接触时导致更明显的粘弹性响应。然而,在中等滑动速度下,从毫米到米每秒,时间相关的影响变得可以忽略不计,无论施加的负载。这些发现表明,虽然zddp衍生的摩擦膜表现出明显的粘弹性,但在实际应用中,它们的行为通常类似于软弹性层,因为典型的滑动速度超出了明显的时间依赖效应发生的范围。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Dependent Contact Behaviour of ZDDP-Derived Tribofilms: A Viscoelastic Layered Model Approach

The ZDDP-derived tribofilm was recently reported to be viscoelastic based on a creep experiment, where a Burgers material model mathematically represents its creep compliance. This study develops a contact model for layered materials by extending a previously established viscoelastic half-space contact model. The approach involves converting analytical frequency response functions into influence coefficients, enabling the investigation of the viscoelastic behaviour of ZDDP-derived tribofilms. The results reveal that the tribofilm exhibits a highly fluid-like response when modelled as a half-space body being in contact with a carbon steel ball during indentation or sliding. When bonded to an elastic substrate in its typical thin-film form (on the nanometre scale), the contact behaviour can still exhibit time-dependent characteristics, depending on the operating conditions. Creep and stress relaxation are observed during indentation, particularly under low loads, while high loads result in a more pronounced viscoelastic response in extremely slow-speed contacts. However, under moderate sliding speeds ranging from millimetres to meters per second, time-dependent effects become negligible, regardless of the applied load. These findings indicate that although ZDDP-derived tribofilms exhibit significant viscoelasticity, their behaviour in practical applications generally resembles that of a soft elastic layer, as typical sliding speeds fall outside the range where pronounced time-dependent effects occur.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信