FS$^{2}$D:完全稀疏的少镜头3D物体检测

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Chunzheng Li;Gaihua Wang;Zeng Liang;Qian Long;Zhengshu Zhou;Xuran Pan
{"title":"FS$^{2}$D:完全稀疏的少镜头3D物体检测","authors":"Chunzheng Li;Gaihua Wang;Zeng Liang;Qian Long;Zhengshu Zhou;Xuran Pan","doi":"10.1109/LRA.2025.3560868","DOIUrl":null,"url":null,"abstract":"Corner cases are a focal issue in current autonomous driving systems, with a significant portion attributed to few-shot detection. Due to the sparse distribution of point cloud data and the real-time requirements of autonomous driving, traditional few-shot detection methods face challenges in direct application to the 3D domain, making it more difficult for outdoor scene 3D detectors to handle corner cases. In this study, we employ fully sparse feature matching and aggregation operations, utilizing meta-learning methods to enhance performance on few-shot categories without increasing network inference parameters. Furthermore, our few-shot research is based on the inherent characteristics of publicly available data without introducing additional categories, allowing for fair comparisons with existing methods. Extensive experiments were conducted on the widely used nuScenes dataset to validate the effectiveness of our method. We demonstrate superior performance compared to the baseline method, especially in handling few-shot categories.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5847-5854"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FS$^{2}$D: Fully Sparse Few-Shot 3D Object Detection\",\"authors\":\"Chunzheng Li;Gaihua Wang;Zeng Liang;Qian Long;Zhengshu Zhou;Xuran Pan\",\"doi\":\"10.1109/LRA.2025.3560868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corner cases are a focal issue in current autonomous driving systems, with a significant portion attributed to few-shot detection. Due to the sparse distribution of point cloud data and the real-time requirements of autonomous driving, traditional few-shot detection methods face challenges in direct application to the 3D domain, making it more difficult for outdoor scene 3D detectors to handle corner cases. In this study, we employ fully sparse feature matching and aggregation operations, utilizing meta-learning methods to enhance performance on few-shot categories without increasing network inference parameters. Furthermore, our few-shot research is based on the inherent characteristics of publicly available data without introducing additional categories, allowing for fair comparisons with existing methods. Extensive experiments were conducted on the widely used nuScenes dataset to validate the effectiveness of our method. We demonstrate superior performance compared to the baseline method, especially in handling few-shot categories.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"5847-5854\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964874/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964874/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

边缘情况是当前自动驾驶系统的一个焦点问题,其中很大一部分归因于少量检测。由于点云数据的稀疏分布和自动驾驶的实时性要求,传统的少镜头检测方法在直接应用于三维领域时面临挑战,使得户外场景三维探测器难以处理角落情况。在这项研究中,我们采用了完全稀疏的特征匹配和聚合操作,利用元学习方法在不增加网络推理参数的情况下提高了对少数类别的性能。此外,我们的少量研究是基于公开可用数据的固有特征,而没有引入额外的类别,允许与现有方法进行公平比较。在广泛使用的nuScenes数据集上进行了大量实验,以验证我们的方法的有效性。与基线方法相比,我们展示了优越的性能,特别是在处理少量射击类别时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FS$^{2}$D: Fully Sparse Few-Shot 3D Object Detection
Corner cases are a focal issue in current autonomous driving systems, with a significant portion attributed to few-shot detection. Due to the sparse distribution of point cloud data and the real-time requirements of autonomous driving, traditional few-shot detection methods face challenges in direct application to the 3D domain, making it more difficult for outdoor scene 3D detectors to handle corner cases. In this study, we employ fully sparse feature matching and aggregation operations, utilizing meta-learning methods to enhance performance on few-shot categories without increasing network inference parameters. Furthermore, our few-shot research is based on the inherent characteristics of publicly available data without introducing additional categories, allowing for fair comparisons with existing methods. Extensive experiments were conducted on the widely used nuScenes dataset to validate the effectiveness of our method. We demonstrate superior performance compared to the baseline method, especially in handling few-shot categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信