Xi Deng , Zhen-hua Jiang , Omar K. Matar , Chao Yan
{"title":"跨不连续面数值格式的对流有界性","authors":"Xi Deng , Zhen-hua Jiang , Omar K. Matar , Chao Yan","doi":"10.1016/j.compfluid.2025.106645","DOIUrl":null,"url":null,"abstract":"<div><div>This short note introduces a novel diagnostic tool for evaluating the convection boundedness properties of numerical schemes across discontinuities. The proposed method is based on the convection boundedness criterion and the normalised variable diagram. By utilising this tool, we can determine the CFL conditions for numerical schemes to satisfy the convection boundedness criterion, identify the locations of over- and under-shoots, optimise the free parameters in the schemes, and develop strategies to prevent numerical oscillations across the discontinuity. We apply the diagnostic tool to assess representative discontinuity-capturing schemes, including THINC, fifth-order WENO, and fifth-order TENO, and validate the conclusions drawn through numerical tests. We further demonstrate the application of the proposed method by formulating a new THINC scheme with less stringent CFL conditions.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"296 ","pages":"Article 106645"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convection boundedness of numerical schemes across discontinuities\",\"authors\":\"Xi Deng , Zhen-hua Jiang , Omar K. Matar , Chao Yan\",\"doi\":\"10.1016/j.compfluid.2025.106645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This short note introduces a novel diagnostic tool for evaluating the convection boundedness properties of numerical schemes across discontinuities. The proposed method is based on the convection boundedness criterion and the normalised variable diagram. By utilising this tool, we can determine the CFL conditions for numerical schemes to satisfy the convection boundedness criterion, identify the locations of over- and under-shoots, optimise the free parameters in the schemes, and develop strategies to prevent numerical oscillations across the discontinuity. We apply the diagnostic tool to assess representative discontinuity-capturing schemes, including THINC, fifth-order WENO, and fifth-order TENO, and validate the conclusions drawn through numerical tests. We further demonstrate the application of the proposed method by formulating a new THINC scheme with less stringent CFL conditions.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"296 \",\"pages\":\"Article 106645\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001057\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the convection boundedness of numerical schemes across discontinuities
This short note introduces a novel diagnostic tool for evaluating the convection boundedness properties of numerical schemes across discontinuities. The proposed method is based on the convection boundedness criterion and the normalised variable diagram. By utilising this tool, we can determine the CFL conditions for numerical schemes to satisfy the convection boundedness criterion, identify the locations of over- and under-shoots, optimise the free parameters in the schemes, and develop strategies to prevent numerical oscillations across the discontinuity. We apply the diagnostic tool to assess representative discontinuity-capturing schemes, including THINC, fifth-order WENO, and fifth-order TENO, and validate the conclusions drawn through numerical tests. We further demonstrate the application of the proposed method by formulating a new THINC scheme with less stringent CFL conditions.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.