Xinyu Meng , Chenxi Liang , Chun Guo , Shaobo Yang , Yujie Ma , Bo Chen , Juanli Deng , Shangwu Fan
{"title":"1350℃下SiCf/SiC单层Yb-Al-Si-O微晶玻璃环境屏障涂层的水氧腐蚀和热冲击行为","authors":"Xinyu Meng , Chenxi Liang , Chun Guo , Shaobo Yang , Yujie Ma , Bo Chen , Juanli Deng , Shangwu Fan","doi":"10.1016/j.surfcoat.2025.132228","DOIUrl":null,"url":null,"abstract":"<div><div>High-density and high-strength SiC<sub>f</sub>/SiC composites were obtained utilizing CaO-Yb<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (CYbAS) glass-ceramics for matrix modification, alongside Yb<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (YbAS) glass-ceramics for environmental barrier coating (EBC). The durability of the single-layer YbAS coating was evaluated by assessing its resistance to water‑oxygen corrosion and thermal shock, in order to ascertain its potential as an advanced EBC. The results indicated that the YbAS coating significantly reduced the growth rate of thermally grown oxide (TGO) in a 50 vol% H<sub>2</sub>O-50 vol% O<sub>2</sub> environment at 1350 °C. Additionally, a water-cooled thermal shock test conducted in air at 1350 °C revealed no evidence of penetrative cracks or TGO formation within the coating. These results underscore the potential application of YbAS coating in high-temperature corrosive environments.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"509 ","pages":"Article 132228"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water‑oxygen corrosion and thermal shock behavior of a single-layer Yb-Al-Si-O glass-ceramics environmental barrier coating on SiCf/SiC at 1350 °C\",\"authors\":\"Xinyu Meng , Chenxi Liang , Chun Guo , Shaobo Yang , Yujie Ma , Bo Chen , Juanli Deng , Shangwu Fan\",\"doi\":\"10.1016/j.surfcoat.2025.132228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-density and high-strength SiC<sub>f</sub>/SiC composites were obtained utilizing CaO-Yb<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (CYbAS) glass-ceramics for matrix modification, alongside Yb<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (YbAS) glass-ceramics for environmental barrier coating (EBC). The durability of the single-layer YbAS coating was evaluated by assessing its resistance to water‑oxygen corrosion and thermal shock, in order to ascertain its potential as an advanced EBC. The results indicated that the YbAS coating significantly reduced the growth rate of thermally grown oxide (TGO) in a 50 vol% H<sub>2</sub>O-50 vol% O<sub>2</sub> environment at 1350 °C. Additionally, a water-cooled thermal shock test conducted in air at 1350 °C revealed no evidence of penetrative cracks or TGO formation within the coating. These results underscore the potential application of YbAS coating in high-temperature corrosive environments.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"509 \",\"pages\":\"Article 132228\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025789722500502X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025789722500502X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Water‑oxygen corrosion and thermal shock behavior of a single-layer Yb-Al-Si-O glass-ceramics environmental barrier coating on SiCf/SiC at 1350 °C
High-density and high-strength SiCf/SiC composites were obtained utilizing CaO-Yb2O3-Al2O3-SiO2 (CYbAS) glass-ceramics for matrix modification, alongside Yb2O3-Al2O3-SiO2 (YbAS) glass-ceramics for environmental barrier coating (EBC). The durability of the single-layer YbAS coating was evaluated by assessing its resistance to water‑oxygen corrosion and thermal shock, in order to ascertain its potential as an advanced EBC. The results indicated that the YbAS coating significantly reduced the growth rate of thermally grown oxide (TGO) in a 50 vol% H2O-50 vol% O2 environment at 1350 °C. Additionally, a water-cooled thermal shock test conducted in air at 1350 °C revealed no evidence of penetrative cracks or TGO formation within the coating. These results underscore the potential application of YbAS coating in high-temperature corrosive environments.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.