304不锈钢两步法制备AO-PEO复合涂层生长机理及性能研究

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
Hongkang Pan , Hailin Lu , Zhengwen Zhang , Zhanshuai Fan , Zihan Liu , Shuangshuang Zhi
{"title":"304不锈钢两步法制备AO-PEO复合涂层生长机理及性能研究","authors":"Hongkang Pan ,&nbsp;Hailin Lu ,&nbsp;Zhengwen Zhang ,&nbsp;Zhanshuai Fan ,&nbsp;Zihan Liu ,&nbsp;Shuangshuang Zhi","doi":"10.1016/j.surfcoat.2025.132230","DOIUrl":null,"url":null,"abstract":"<div><div>Plasma electrolytic oxidation (PEO) technology is an effective means to improve the surface performance of metal parts, but this method is not suitable for non-valve metal 304 stainless steel. Because 304 stainless steel contains a large amount of Cr element, it will hinder the rise of voltage during the PEO process, thus causing the PEO process to fail. In order to achieve PEO on 304 stainless steel, anodic oxidation (AO) was used as a pretreatment in this study. The experimental outcomes display that compared to 304 stainless steel, after PEO treatment, the hardness of the sample enhanced by 139.32 %, the scratch width under 3 N and 5 N load conditions reduced by 46.47 % and 44.07 % respectively, and the corrosion current density i<sub>corr</sub> reduced by two orders of magnitude. This study not only addressed the issue of applying PEO technology on the surface of 304 stainless steel, but also prepared a coating with outstanding friction and corrosion resistance. It provides a new method for improving the performance of 304 stainless steel in the future.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"509 ","pages":"Article 132230"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the growth mechanism and properties of AO-PEO composite coating on 304 stainless steel prepared by two-step process\",\"authors\":\"Hongkang Pan ,&nbsp;Hailin Lu ,&nbsp;Zhengwen Zhang ,&nbsp;Zhanshuai Fan ,&nbsp;Zihan Liu ,&nbsp;Shuangshuang Zhi\",\"doi\":\"10.1016/j.surfcoat.2025.132230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plasma electrolytic oxidation (PEO) technology is an effective means to improve the surface performance of metal parts, but this method is not suitable for non-valve metal 304 stainless steel. Because 304 stainless steel contains a large amount of Cr element, it will hinder the rise of voltage during the PEO process, thus causing the PEO process to fail. In order to achieve PEO on 304 stainless steel, anodic oxidation (AO) was used as a pretreatment in this study. The experimental outcomes display that compared to 304 stainless steel, after PEO treatment, the hardness of the sample enhanced by 139.32 %, the scratch width under 3 N and 5 N load conditions reduced by 46.47 % and 44.07 % respectively, and the corrosion current density i<sub>corr</sub> reduced by two orders of magnitude. This study not only addressed the issue of applying PEO technology on the surface of 304 stainless steel, but also prepared a coating with outstanding friction and corrosion resistance. It provides a new method for improving the performance of 304 stainless steel in the future.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"509 \",\"pages\":\"Article 132230\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897225005043\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225005043","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

等离子体电解氧化(PEO)技术是提高金属零件表面性能的有效手段,但这种方法不适用于非阀门金属304不锈钢。由于304不锈钢中含有大量的Cr元素,会阻碍PEO过程中电压的上升,从而导致PEO过程失败。为了实现304不锈钢的PEO,本研究采用阳极氧化(AO)作为预处理方法。实验结果表明,与304不锈钢相比,经PEO处理后试样的硬度提高了139.32%,3 N和5 N载荷下的划痕宽度分别降低了46.47%和44.07%,腐蚀电流密度降低了两个数量级。本研究不仅解决了在304不锈钢表面应用PEO技术的问题,而且制备了一种具有优异耐摩擦和耐腐蚀性能的涂层。为今后提高304不锈钢的性能提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on the growth mechanism and properties of AO-PEO composite coating on 304 stainless steel prepared by two-step process
Plasma electrolytic oxidation (PEO) technology is an effective means to improve the surface performance of metal parts, but this method is not suitable for non-valve metal 304 stainless steel. Because 304 stainless steel contains a large amount of Cr element, it will hinder the rise of voltage during the PEO process, thus causing the PEO process to fail. In order to achieve PEO on 304 stainless steel, anodic oxidation (AO) was used as a pretreatment in this study. The experimental outcomes display that compared to 304 stainless steel, after PEO treatment, the hardness of the sample enhanced by 139.32 %, the scratch width under 3 N and 5 N load conditions reduced by 46.47 % and 44.07 % respectively, and the corrosion current density icorr reduced by two orders of magnitude. This study not only addressed the issue of applying PEO technology on the surface of 304 stainless steel, but also prepared a coating with outstanding friction and corrosion resistance. It provides a new method for improving the performance of 304 stainless steel in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信