A.K. Srivastava , K. Ram , D.S. Bisht , M.P. Raju , V. Singh , V.K. Soni
{"title":"气象变率对德里冬季雾期气溶胶粒径分布的影响:个案研究","authors":"A.K. Srivastava , K. Ram , D.S. Bisht , M.P. Raju , V. Singh , V.K. Soni","doi":"10.1016/j.jastp.2025.106531","DOIUrl":null,"url":null,"abstract":"<div><div>The aerosol size distribution, particularly the number and mass distributions, plays a crucial role in understanding changes in optical properties due to hygroscopic growth, which affects visibility and radiative forcing on a regional scale. The Indo-Gangetic Plain (IGP), including National Capital Region (NCR) of Delhi, experiences severe fog and haze with reduced visibility during the post-monsoon to winter months (October–February) every year. This study reports aerosol mass size distribution over Delhi during a winter fog campaign (December 15, 2015–February 15, 2016) using a ground-based optical particle counter. The fine and coarse mode aerosols were contributed to ∼85% and 15% to the total aerosol mass concentration during the campaign period. The characteristic changes in aerosol size distribution, effective radius, and the influence of meteorological factors, particularly relative humidity (RH) and temperature, under three visibility conditions: Vis-1 (<600 m), Vis-2 (600–1200 m), and Vis-3 (>1200 m) were investigated. Fine-mode aerosols accounted for ∼85 % of the total aerosol mass, with their concentration increasing by a factor of 3.7 during Vis-1 and 2.3 during Vis-2 compared to Vis-3, when the effective radius of aerosol was lowest (R<sub>eff</sub>: 0.44 μm). Fine particle concentrations showed a positive correlation with RH (R = 0.35) and a negative correlation with visibility (R = −0.65), suggesting that the high RH and fine-mode aerosols contribute to fog formation and reduced visibility in Delhi-NCR.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"271 ","pages":"Article 106531"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of meteorological variability on aerosol size distribution during the winter fog campaign over Delhi: a case study\",\"authors\":\"A.K. Srivastava , K. Ram , D.S. Bisht , M.P. Raju , V. Singh , V.K. Soni\",\"doi\":\"10.1016/j.jastp.2025.106531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aerosol size distribution, particularly the number and mass distributions, plays a crucial role in understanding changes in optical properties due to hygroscopic growth, which affects visibility and radiative forcing on a regional scale. The Indo-Gangetic Plain (IGP), including National Capital Region (NCR) of Delhi, experiences severe fog and haze with reduced visibility during the post-monsoon to winter months (October–February) every year. This study reports aerosol mass size distribution over Delhi during a winter fog campaign (December 15, 2015–February 15, 2016) using a ground-based optical particle counter. The fine and coarse mode aerosols were contributed to ∼85% and 15% to the total aerosol mass concentration during the campaign period. The characteristic changes in aerosol size distribution, effective radius, and the influence of meteorological factors, particularly relative humidity (RH) and temperature, under three visibility conditions: Vis-1 (<600 m), Vis-2 (600–1200 m), and Vis-3 (>1200 m) were investigated. Fine-mode aerosols accounted for ∼85 % of the total aerosol mass, with their concentration increasing by a factor of 3.7 during Vis-1 and 2.3 during Vis-2 compared to Vis-3, when the effective radius of aerosol was lowest (R<sub>eff</sub>: 0.44 μm). Fine particle concentrations showed a positive correlation with RH (R = 0.35) and a negative correlation with visibility (R = −0.65), suggesting that the high RH and fine-mode aerosols contribute to fog formation and reduced visibility in Delhi-NCR.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"271 \",\"pages\":\"Article 106531\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682625001154\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625001154","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Influence of meteorological variability on aerosol size distribution during the winter fog campaign over Delhi: a case study
The aerosol size distribution, particularly the number and mass distributions, plays a crucial role in understanding changes in optical properties due to hygroscopic growth, which affects visibility and radiative forcing on a regional scale. The Indo-Gangetic Plain (IGP), including National Capital Region (NCR) of Delhi, experiences severe fog and haze with reduced visibility during the post-monsoon to winter months (October–February) every year. This study reports aerosol mass size distribution over Delhi during a winter fog campaign (December 15, 2015–February 15, 2016) using a ground-based optical particle counter. The fine and coarse mode aerosols were contributed to ∼85% and 15% to the total aerosol mass concentration during the campaign period. The characteristic changes in aerosol size distribution, effective radius, and the influence of meteorological factors, particularly relative humidity (RH) and temperature, under three visibility conditions: Vis-1 (<600 m), Vis-2 (600–1200 m), and Vis-3 (>1200 m) were investigated. Fine-mode aerosols accounted for ∼85 % of the total aerosol mass, with their concentration increasing by a factor of 3.7 during Vis-1 and 2.3 during Vis-2 compared to Vis-3, when the effective radius of aerosol was lowest (Reff: 0.44 μm). Fine particle concentrations showed a positive correlation with RH (R = 0.35) and a negative correlation with visibility (R = −0.65), suggesting that the high RH and fine-mode aerosols contribute to fog formation and reduced visibility in Delhi-NCR.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.