Christian Leonardo Castro-Riquelme , Eduardo Alberto López-Maldonado , Adrián Ochoa-Terán , Georgina Pina-Luis , N. Nthunya Lebea
{"title":"加强农药检测:评价胺修饰的单氨基羧酸对草甘膦和麦草畏的敏感性","authors":"Christian Leonardo Castro-Riquelme , Eduardo Alberto López-Maldonado , Adrián Ochoa-Terán , Georgina Pina-Luis , N. Nthunya Lebea","doi":"10.1016/j.saa.2025.126315","DOIUrl":null,"url":null,"abstract":"<div><div>In this work a series of monocarbamoylcarboxylic acids (MCCAs) <em>N</em>-functionalized with different amines were evaluated to detect the pesticides glyphosate (Gly) and dicamba (Dic). The MCCAs have molar absorptivity coefficients (ε) three orders of magnitude higher than pesticides facilitating the measurements under UV–Vis spectroscopy. These compounds have the isolectric point (IEP) in the range of pH 3.04–4.82 and beyond are negative charged. The absorption properties of the compounds are pH-dependent due to the protonation and deprotonation of their molecules, the adsorption band shifts to a longer wavelength as the pH increases and in some ligands a hyperchromic effect is observed. The titration of MCCAs with a pesticide generates a change in the adsorption band and the sensitivity of the response is also pH-dependent. The sensitivity of MCCAs towards pesticides decreased at pH 5.0 and increased at pH 7.0 and 9.0 which is clearly influenced by the acid-base equilibriums in water. The response was more sensitive towards dicamba than with glyphosate, exhibiting linear concentration intervals up to 100 µM with <strong>1a</strong> at pH 4 and 85 µM in compounds <strong>2b</strong> and <strong>2c</strong> at pH 7.0. The <sup>1</sup>H NMR analysis in DMSO‑<em>d<sub>6</sub></em> of compounds <strong>2a</strong> and <strong>2c</strong> in presence of glyphosate and dicamba showed changes in the hydrogen signals indicating the interaction of these MCCAs with the pesticides in specific sites of their molecules. These MCCAs, proved to be promising molecular platforms for the optical detection of glyphosate and dicamba due to their pH-adjustable sensitivity and their ability to show significant electrostatic interactions, enabling pesticide detection over a wide concentration range.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"340 ","pages":"Article 126315"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced detection of pesticides: evaluating monocarbamoylcarboxylic acids modified with amines for glyphosate and dicamba sensitivity\",\"authors\":\"Christian Leonardo Castro-Riquelme , Eduardo Alberto López-Maldonado , Adrián Ochoa-Terán , Georgina Pina-Luis , N. Nthunya Lebea\",\"doi\":\"10.1016/j.saa.2025.126315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work a series of monocarbamoylcarboxylic acids (MCCAs) <em>N</em>-functionalized with different amines were evaluated to detect the pesticides glyphosate (Gly) and dicamba (Dic). The MCCAs have molar absorptivity coefficients (ε) three orders of magnitude higher than pesticides facilitating the measurements under UV–Vis spectroscopy. These compounds have the isolectric point (IEP) in the range of pH 3.04–4.82 and beyond are negative charged. The absorption properties of the compounds are pH-dependent due to the protonation and deprotonation of their molecules, the adsorption band shifts to a longer wavelength as the pH increases and in some ligands a hyperchromic effect is observed. The titration of MCCAs with a pesticide generates a change in the adsorption band and the sensitivity of the response is also pH-dependent. The sensitivity of MCCAs towards pesticides decreased at pH 5.0 and increased at pH 7.0 and 9.0 which is clearly influenced by the acid-base equilibriums in water. The response was more sensitive towards dicamba than with glyphosate, exhibiting linear concentration intervals up to 100 µM with <strong>1a</strong> at pH 4 and 85 µM in compounds <strong>2b</strong> and <strong>2c</strong> at pH 7.0. The <sup>1</sup>H NMR analysis in DMSO‑<em>d<sub>6</sub></em> of compounds <strong>2a</strong> and <strong>2c</strong> in presence of glyphosate and dicamba showed changes in the hydrogen signals indicating the interaction of these MCCAs with the pesticides in specific sites of their molecules. These MCCAs, proved to be promising molecular platforms for the optical detection of glyphosate and dicamba due to their pH-adjustable sensitivity and their ability to show significant electrostatic interactions, enabling pesticide detection over a wide concentration range.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"340 \",\"pages\":\"Article 126315\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525006213\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525006213","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Enhanced detection of pesticides: evaluating monocarbamoylcarboxylic acids modified with amines for glyphosate and dicamba sensitivity
In this work a series of monocarbamoylcarboxylic acids (MCCAs) N-functionalized with different amines were evaluated to detect the pesticides glyphosate (Gly) and dicamba (Dic). The MCCAs have molar absorptivity coefficients (ε) three orders of magnitude higher than pesticides facilitating the measurements under UV–Vis spectroscopy. These compounds have the isolectric point (IEP) in the range of pH 3.04–4.82 and beyond are negative charged. The absorption properties of the compounds are pH-dependent due to the protonation and deprotonation of their molecules, the adsorption band shifts to a longer wavelength as the pH increases and in some ligands a hyperchromic effect is observed. The titration of MCCAs with a pesticide generates a change in the adsorption band and the sensitivity of the response is also pH-dependent. The sensitivity of MCCAs towards pesticides decreased at pH 5.0 and increased at pH 7.0 and 9.0 which is clearly influenced by the acid-base equilibriums in water. The response was more sensitive towards dicamba than with glyphosate, exhibiting linear concentration intervals up to 100 µM with 1a at pH 4 and 85 µM in compounds 2b and 2c at pH 7.0. The 1H NMR analysis in DMSO‑d6 of compounds 2a and 2c in presence of glyphosate and dicamba showed changes in the hydrogen signals indicating the interaction of these MCCAs with the pesticides in specific sites of their molecules. These MCCAs, proved to be promising molecular platforms for the optical detection of glyphosate and dicamba due to their pH-adjustable sensitivity and their ability to show significant electrostatic interactions, enabling pesticide detection over a wide concentration range.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.