印度干旱半干旱地区不同含水层地下水质量预测的优化智能学习

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Imran Khan , Sarwar Nizam , Apoorva Bamal , Abdul Majed Sajib , Mir Talas Mahammad Diganta , Mohd Azfar Shaida , S.M. Ashekuzzaman , Stephen Nash , Agnieszka I. Olbert , Md Galal Uddin
{"title":"印度干旱半干旱地区不同含水层地下水质量预测的优化智能学习","authors":"Imran Khan ,&nbsp;Sarwar Nizam ,&nbsp;Apoorva Bamal ,&nbsp;Abdul Majed Sajib ,&nbsp;Mir Talas Mahammad Diganta ,&nbsp;Mohd Azfar Shaida ,&nbsp;S.M. Ashekuzzaman ,&nbsp;Stephen Nash ,&nbsp;Agnieszka I. Olbert ,&nbsp;Md Galal Uddin","doi":"10.1016/j.clet.2025.100984","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring access to safe, affordable drinking water while implementing sustainable management practices is vital for achieving the United Nations Sustainable Development Goals-2030. Accurate groundwater (GW) quality assessment plays a crucial role in enhancing water management strategies. This study evaluates GW resources across the diverse aquifer systems of arid and semi-arid regions of northwest India using the recently developed Root Mean Squared-Water Quality Index (RMS-WQI) model, optimized with machine learning (ML) techniques. A total of 772 GW samples from 36 districts of state Rajasthan were analyzed for 16 water quality (WQ) indicators/parameters, including pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), major cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>), anions (Cl<sup>−</sup>, CO<sub>3</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, F<sup>−</sup>, PO<sub>4</sub><sup>3−</sup>), Alkalinity (ALK), and Total Hardness (TH). The results indicate slightly alkaline GW (average pH 7.9), with elevated concentrations of Na<sup>+</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup> and NO<sub>3</sub><sup>−</sup> exceeding Bureau of Indian Standards (BIS). This study employs the eXtreme Gradient Boosting (XGB) algorithm, demonstrating strong predictive capabilities within the RMS-WQI model across diverse aquifers of Rajasthan. This marks the first application of RMS-WQI at a state-wide scale in India. Model performance assessment indicated groundwater quality ranging from ‘fair’ to ‘marginal’, generally meeting BIS standards, with high sensitivity and low uncertainty. Statistical metrics (Root Mean Square Error-RMSE, Mean Squared Error-MSE, Mean Absolute Error-MAE, and Percentage of Absolute Bias Error-PABE) validated the model's efficiency, with minimal error and high sensitivity. Optimization using “Optuna” further enhanced model performance, confirmed by Tukey's Honest Significant Difference (HSD) test. Sensitivity analysis demonstrated robust goodness-of-fit, while uncertainty analysis indicated minimal discrepancies, with overall uncertainty below 2 %. Spatial analysis revealed varying WQ across districts, ranging from marginal to poor, while efficiency metrics demonstrated the model's effectiveness in providing accurate assessments. The configured WQI model could substantially contribute to informing aquatic managers and strategic planners for sustainable water resource management and policy development aimed at enhancing GW quality.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"26 ","pages":"Article 100984"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized intelligent learning for groundwater quality prediction in diverse aquifers of arid and semi-arid regions of India\",\"authors\":\"Imran Khan ,&nbsp;Sarwar Nizam ,&nbsp;Apoorva Bamal ,&nbsp;Abdul Majed Sajib ,&nbsp;Mir Talas Mahammad Diganta ,&nbsp;Mohd Azfar Shaida ,&nbsp;S.M. Ashekuzzaman ,&nbsp;Stephen Nash ,&nbsp;Agnieszka I. Olbert ,&nbsp;Md Galal Uddin\",\"doi\":\"10.1016/j.clet.2025.100984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensuring access to safe, affordable drinking water while implementing sustainable management practices is vital for achieving the United Nations Sustainable Development Goals-2030. Accurate groundwater (GW) quality assessment plays a crucial role in enhancing water management strategies. This study evaluates GW resources across the diverse aquifer systems of arid and semi-arid regions of northwest India using the recently developed Root Mean Squared-Water Quality Index (RMS-WQI) model, optimized with machine learning (ML) techniques. A total of 772 GW samples from 36 districts of state Rajasthan were analyzed for 16 water quality (WQ) indicators/parameters, including pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), major cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>), anions (Cl<sup>−</sup>, CO<sub>3</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, F<sup>−</sup>, PO<sub>4</sub><sup>3−</sup>), Alkalinity (ALK), and Total Hardness (TH). The results indicate slightly alkaline GW (average pH 7.9), with elevated concentrations of Na<sup>+</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup> and NO<sub>3</sub><sup>−</sup> exceeding Bureau of Indian Standards (BIS). This study employs the eXtreme Gradient Boosting (XGB) algorithm, demonstrating strong predictive capabilities within the RMS-WQI model across diverse aquifers of Rajasthan. This marks the first application of RMS-WQI at a state-wide scale in India. Model performance assessment indicated groundwater quality ranging from ‘fair’ to ‘marginal’, generally meeting BIS standards, with high sensitivity and low uncertainty. Statistical metrics (Root Mean Square Error-RMSE, Mean Squared Error-MSE, Mean Absolute Error-MAE, and Percentage of Absolute Bias Error-PABE) validated the model's efficiency, with minimal error and high sensitivity. Optimization using “Optuna” further enhanced model performance, confirmed by Tukey's Honest Significant Difference (HSD) test. Sensitivity analysis demonstrated robust goodness-of-fit, while uncertainty analysis indicated minimal discrepancies, with overall uncertainty below 2 %. Spatial analysis revealed varying WQ across districts, ranging from marginal to poor, while efficiency metrics demonstrated the model's effectiveness in providing accurate assessments. The configured WQI model could substantially contribute to informing aquatic managers and strategic planners for sustainable water resource management and policy development aimed at enhancing GW quality.</div></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"26 \",\"pages\":\"Article 100984\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790825001077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

确保获得安全、负担得起的饮用水,同时实施可持续管理做法,对于实现联合国2030年可持续发展目标至关重要。准确的地下水水质评价对提高水资源管理水平具有重要意义。本研究使用最近开发的均方根水质指数(RMS-WQI)模型,通过机器学习(ML)技术进行优化,评估了印度西北部干旱和半干旱地区不同含水层系统的GW资源。对来自拉贾斯坦邦36个地区的772 GW样品进行了16项水质指标/参数分析,包括pH、电导率(EC)、总溶解固形物(TDS)、主要阳离子(Ca2+、Mg2+、Na+、K+)、阴离子(Cl−、CO32−、HCO3−、SO42−、NO3−、F−、PO43−)、碱度(ALK)和总硬度(TH)。结果表明:微碱性GW(平均pH为7.9),Na+、Cl−、SO42−和NO3−浓度均高于印度标准局(BIS)。本研究采用极限梯度增强(XGB)算法,在RMS-WQI模型中展示了对拉贾斯坦邦不同含水层的强大预测能力。这标志着RMS-WQI在印度全国范围内的首次应用。模型性能评价表明,地下水水质在“一般”到“边际”之间,基本符合BIS标准,具有高灵敏度和低不确定性。统计指标(均方根误差- rmse,均方误差- mse,平均绝对误差- mae和绝对偏差百分比误差- pabe)验证了模型的有效性,误差最小,灵敏度高。使用“Optuna”优化进一步提高了模型的性能,Tukey的诚实显著差异(HSD)测试证实了这一点。敏感性分析显示了稳健的拟合优度,而不确定性分析显示最小的差异,总体不确定性低于2%。空间分析显示,不同地区的WQ各不相同,从边缘到较差,而效率指标证明了模型在提供准确评估方面的有效性。配置的WQI模型可以为水生管理者和战略规划者提供信息,帮助他们进行可持续水资源管理和制定旨在提高GW质量的政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized intelligent learning for groundwater quality prediction in diverse aquifers of arid and semi-arid regions of India

Optimized intelligent learning for groundwater quality prediction in diverse aquifers of arid and semi-arid regions of India
Ensuring access to safe, affordable drinking water while implementing sustainable management practices is vital for achieving the United Nations Sustainable Development Goals-2030. Accurate groundwater (GW) quality assessment plays a crucial role in enhancing water management strategies. This study evaluates GW resources across the diverse aquifer systems of arid and semi-arid regions of northwest India using the recently developed Root Mean Squared-Water Quality Index (RMS-WQI) model, optimized with machine learning (ML) techniques. A total of 772 GW samples from 36 districts of state Rajasthan were analyzed for 16 water quality (WQ) indicators/parameters, including pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), major cations (Ca2+, Mg2+, Na+, K+), anions (Cl, CO32−, HCO3, SO42−, NO3, F, PO43−), Alkalinity (ALK), and Total Hardness (TH). The results indicate slightly alkaline GW (average pH 7.9), with elevated concentrations of Na+, Cl, SO42− and NO3 exceeding Bureau of Indian Standards (BIS). This study employs the eXtreme Gradient Boosting (XGB) algorithm, demonstrating strong predictive capabilities within the RMS-WQI model across diverse aquifers of Rajasthan. This marks the first application of RMS-WQI at a state-wide scale in India. Model performance assessment indicated groundwater quality ranging from ‘fair’ to ‘marginal’, generally meeting BIS standards, with high sensitivity and low uncertainty. Statistical metrics (Root Mean Square Error-RMSE, Mean Squared Error-MSE, Mean Absolute Error-MAE, and Percentage of Absolute Bias Error-PABE) validated the model's efficiency, with minimal error and high sensitivity. Optimization using “Optuna” further enhanced model performance, confirmed by Tukey's Honest Significant Difference (HSD) test. Sensitivity analysis demonstrated robust goodness-of-fit, while uncertainty analysis indicated minimal discrepancies, with overall uncertainty below 2 %. Spatial analysis revealed varying WQ across districts, ranging from marginal to poor, while efficiency metrics demonstrated the model's effectiveness in providing accurate assessments. The configured WQI model could substantially contribute to informing aquatic managers and strategic planners for sustainable water resource management and policy development aimed at enhancing GW quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信