Peijin Li , Anqiang Sun , Caixia Guo , Zhilong Peng , Chao Wang
{"title":"心肌纤维取向对左心室收缩力的影响","authors":"Peijin Li , Anqiang Sun , Caixia Guo , Zhilong Peng , Chao Wang","doi":"10.1016/j.jmbbm.2025.107025","DOIUrl":null,"url":null,"abstract":"<div><div>Myocardial fibers of the left ventricle (LV) play a pivotal role in electrical conduction, mechanical contraction, and numerous clinical malfunctions. While the general fiber orientation of the LV has been revealed through histological analysis and magnetic resonance diffusion tensor imaging, its impact on LV deformation remains largely unknown. In this paper, we adopt an idealized hollow semi-ellipsoid LV model, allowing for adjustable fiber orientations using a widely-accepted rule-based method. Simulations are conducted using a robustly coupled excitation-contraction nonlinear finite element algorithm. Our primary focus is on exploring the orientation angle of regularly-distributed fibers and the proportion of chaotic fibers, whose orientation angles are randomly assigned, on the end-systolic volume and ejection fraction of the LV. By employing this model, we successfully recreate the changes in LV volume over a cardiac cycle and capture the typical twisting motion observed in clinical practice. Furthermore, our findings reveal that when myocardial fibers are regularly distributed and the orientation angle increases, the ejection fraction of the LV decreases along with an increase in end-systolic volume, indicating a decline in LV contractility. Additionally, both the proportion and spatial distribution of chaotic fibers within the LV influence its contractility. Specifically, an LV with a higher proportion of chaotic fibers in the basal area exhibits weaker contractility. These results provide deeper insights into the quantitative influence of myocardial fibers on LV contractility and failure, offering valuable information for further research and clinical applications.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107025"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of orientation of myocardial fibers on the contractility of left ventricle\",\"authors\":\"Peijin Li , Anqiang Sun , Caixia Guo , Zhilong Peng , Chao Wang\",\"doi\":\"10.1016/j.jmbbm.2025.107025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myocardial fibers of the left ventricle (LV) play a pivotal role in electrical conduction, mechanical contraction, and numerous clinical malfunctions. While the general fiber orientation of the LV has been revealed through histological analysis and magnetic resonance diffusion tensor imaging, its impact on LV deformation remains largely unknown. In this paper, we adopt an idealized hollow semi-ellipsoid LV model, allowing for adjustable fiber orientations using a widely-accepted rule-based method. Simulations are conducted using a robustly coupled excitation-contraction nonlinear finite element algorithm. Our primary focus is on exploring the orientation angle of regularly-distributed fibers and the proportion of chaotic fibers, whose orientation angles are randomly assigned, on the end-systolic volume and ejection fraction of the LV. By employing this model, we successfully recreate the changes in LV volume over a cardiac cycle and capture the typical twisting motion observed in clinical practice. Furthermore, our findings reveal that when myocardial fibers are regularly distributed and the orientation angle increases, the ejection fraction of the LV decreases along with an increase in end-systolic volume, indicating a decline in LV contractility. Additionally, both the proportion and spatial distribution of chaotic fibers within the LV influence its contractility. Specifically, an LV with a higher proportion of chaotic fibers in the basal area exhibits weaker contractility. These results provide deeper insights into the quantitative influence of myocardial fibers on LV contractility and failure, offering valuable information for further research and clinical applications.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"168 \",\"pages\":\"Article 107025\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001419\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001419","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effects of orientation of myocardial fibers on the contractility of left ventricle
Myocardial fibers of the left ventricle (LV) play a pivotal role in electrical conduction, mechanical contraction, and numerous clinical malfunctions. While the general fiber orientation of the LV has been revealed through histological analysis and magnetic resonance diffusion tensor imaging, its impact on LV deformation remains largely unknown. In this paper, we adopt an idealized hollow semi-ellipsoid LV model, allowing for adjustable fiber orientations using a widely-accepted rule-based method. Simulations are conducted using a robustly coupled excitation-contraction nonlinear finite element algorithm. Our primary focus is on exploring the orientation angle of regularly-distributed fibers and the proportion of chaotic fibers, whose orientation angles are randomly assigned, on the end-systolic volume and ejection fraction of the LV. By employing this model, we successfully recreate the changes in LV volume over a cardiac cycle and capture the typical twisting motion observed in clinical practice. Furthermore, our findings reveal that when myocardial fibers are regularly distributed and the orientation angle increases, the ejection fraction of the LV decreases along with an increase in end-systolic volume, indicating a decline in LV contractility. Additionally, both the proportion and spatial distribution of chaotic fibers within the LV influence its contractility. Specifically, an LV with a higher proportion of chaotic fibers in the basal area exhibits weaker contractility. These results provide deeper insights into the quantitative influence of myocardial fibers on LV contractility and failure, offering valuable information for further research and clinical applications.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.