{"title":"基于短期冲突的崩溃风险预测:贝叶斯条件峰值超过阈值方法","authors":"Depeng Niu, Tarek Sayed","doi":"10.1016/j.amar.2025.100385","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasting short-term crash risks is crucial for real-time road safety management, yet this research area remains largely underexplored. Classical Extreme Value Theory (EVT) models assume independent observations, limiting their ability to capture the clustering behavior in occurrence times and magnitudes of extreme traffic conflicts. To overcome this limitation, we introduce conditional peak-over-threshold (POT) models that incorporate time-varying parameters to simultaneously capture the dynamics of extreme traffic conflicts and enable forecasting for crash risk. Within the framework of marked point process (MPP) and EVT, we develop the conditional POT models based on two observation-driven approaches (self-exciting and score-driven) through Bayesian inference. A dynamic risk measure, Value-at-Risk (VaR), is employed to assess the performance of these conditional POT models for crash risk forecasting. Empirical analysis of rear-end conflict data collected from a signalized intersection across two separate days demonstrates that both self-exciting and score-driven POT models effectively characterize the clustering behavior of extreme traffic conflicts. Furthermore, backtesting confirms that conditional POT models provide more accurate crash risk forecasts than classical POT models, which tend to underestimate crash risk by ignoring temporal dependence in extreme traffic conflicts. Among the examined model specifications, score-driven POT models demonstrate superior forecasting performance. Our proposed Bayesian conditional POT approach provides probabilistic forecasting that enables direct uncertainty quantification and dynamic monitoring of crash risk, thereby supporting informed safety decisions.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"46 ","pages":"Article 100385"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term conflict-based crash risk forecasting: A Bayesian conditional peak-over-threshold approach\",\"authors\":\"Depeng Niu, Tarek Sayed\",\"doi\":\"10.1016/j.amar.2025.100385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forecasting short-term crash risks is crucial for real-time road safety management, yet this research area remains largely underexplored. Classical Extreme Value Theory (EVT) models assume independent observations, limiting their ability to capture the clustering behavior in occurrence times and magnitudes of extreme traffic conflicts. To overcome this limitation, we introduce conditional peak-over-threshold (POT) models that incorporate time-varying parameters to simultaneously capture the dynamics of extreme traffic conflicts and enable forecasting for crash risk. Within the framework of marked point process (MPP) and EVT, we develop the conditional POT models based on two observation-driven approaches (self-exciting and score-driven) through Bayesian inference. A dynamic risk measure, Value-at-Risk (VaR), is employed to assess the performance of these conditional POT models for crash risk forecasting. Empirical analysis of rear-end conflict data collected from a signalized intersection across two separate days demonstrates that both self-exciting and score-driven POT models effectively characterize the clustering behavior of extreme traffic conflicts. Furthermore, backtesting confirms that conditional POT models provide more accurate crash risk forecasts than classical POT models, which tend to underestimate crash risk by ignoring temporal dependence in extreme traffic conflicts. Among the examined model specifications, score-driven POT models demonstrate superior forecasting performance. Our proposed Bayesian conditional POT approach provides probabilistic forecasting that enables direct uncertainty quantification and dynamic monitoring of crash risk, thereby supporting informed safety decisions.</div></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"46 \",\"pages\":\"Article 100385\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665725000168\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000168","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Short-term conflict-based crash risk forecasting: A Bayesian conditional peak-over-threshold approach
Forecasting short-term crash risks is crucial for real-time road safety management, yet this research area remains largely underexplored. Classical Extreme Value Theory (EVT) models assume independent observations, limiting their ability to capture the clustering behavior in occurrence times and magnitudes of extreme traffic conflicts. To overcome this limitation, we introduce conditional peak-over-threshold (POT) models that incorporate time-varying parameters to simultaneously capture the dynamics of extreme traffic conflicts and enable forecasting for crash risk. Within the framework of marked point process (MPP) and EVT, we develop the conditional POT models based on two observation-driven approaches (self-exciting and score-driven) through Bayesian inference. A dynamic risk measure, Value-at-Risk (VaR), is employed to assess the performance of these conditional POT models for crash risk forecasting. Empirical analysis of rear-end conflict data collected from a signalized intersection across two separate days demonstrates that both self-exciting and score-driven POT models effectively characterize the clustering behavior of extreme traffic conflicts. Furthermore, backtesting confirms that conditional POT models provide more accurate crash risk forecasts than classical POT models, which tend to underestimate crash risk by ignoring temporal dependence in extreme traffic conflicts. Among the examined model specifications, score-driven POT models demonstrate superior forecasting performance. Our proposed Bayesian conditional POT approach provides probabilistic forecasting that enables direct uncertainty quantification and dynamic monitoring of crash risk, thereby supporting informed safety decisions.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.