使用可解释机器学习将环境因素纳入基础设施不平等评估

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Bo Li, Ali Mostafavi
{"title":"使用可解释机器学习将环境因素纳入基础设施不平等评估","authors":"Bo Li,&nbsp;Ali Mostafavi","doi":"10.1016/j.compenvurbsys.2025.102301","DOIUrl":null,"url":null,"abstract":"<div><div>A growing body of literature has recognized the importance of characterizing infrastructure inequality in cities and provided quantified metrics to inform urban development plans. However, the majority of existing approaches suffered from two limitations. First, prior research has provided empirical evidence of negative environmental impacts that infrastructure can incur, while infrastructure provision inequality assessment has not taken those environmental concerns into consideration. Second, comprehensive provision assessment for multi-infrastructure system calls for a proper weight assignment, while current studies either determine the infrastructure components as equal weights or rely on subjective methods (e.g. AHP), which may be affected by potential biases. This study proposes a novel approach for incorporating environmental considerations into quantifying and assessing infrastructure provision in cities based on a data-driven method. We applied an interpretable machine learning method (XGBoost + SHAP) to capture the relationship between infrastructure features and environmental hazards (i.e., air pollution and urban heat), and then determined feature weights as their relative contributions towards environmental hazards when calculating infrastructure provision. The implementation of the model in five metropolitan areas in the U.S. demonstrates the capability of the proposed approach in characterizing inequality in infrastructure. Further the study reveals both spatial and income inequality regarding infrastructure provision. Environmentally integrated infrastructure provision proposed in this study can better capture the intersection of infrastructure development and environmental justice in measuring and characterizing infrastructure inequality in cities. This study could be used effectively to inform integrated urban design strategies to promote infrastructure equity and environmental justice based on data-driven and machine learning-based insights.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"120 ","pages":"Article 102301"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating environmental considerations into infrastructure inequality evaluation using interpretable machine learning\",\"authors\":\"Bo Li,&nbsp;Ali Mostafavi\",\"doi\":\"10.1016/j.compenvurbsys.2025.102301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A growing body of literature has recognized the importance of characterizing infrastructure inequality in cities and provided quantified metrics to inform urban development plans. However, the majority of existing approaches suffered from two limitations. First, prior research has provided empirical evidence of negative environmental impacts that infrastructure can incur, while infrastructure provision inequality assessment has not taken those environmental concerns into consideration. Second, comprehensive provision assessment for multi-infrastructure system calls for a proper weight assignment, while current studies either determine the infrastructure components as equal weights or rely on subjective methods (e.g. AHP), which may be affected by potential biases. This study proposes a novel approach for incorporating environmental considerations into quantifying and assessing infrastructure provision in cities based on a data-driven method. We applied an interpretable machine learning method (XGBoost + SHAP) to capture the relationship between infrastructure features and environmental hazards (i.e., air pollution and urban heat), and then determined feature weights as their relative contributions towards environmental hazards when calculating infrastructure provision. The implementation of the model in five metropolitan areas in the U.S. demonstrates the capability of the proposed approach in characterizing inequality in infrastructure. Further the study reveals both spatial and income inequality regarding infrastructure provision. Environmentally integrated infrastructure provision proposed in this study can better capture the intersection of infrastructure development and environmental justice in measuring and characterizing infrastructure inequality in cities. This study could be used effectively to inform integrated urban design strategies to promote infrastructure equity and environmental justice based on data-driven and machine learning-based insights.</div></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"120 \",\"pages\":\"Article 102301\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971525000547\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000547","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的文献认识到描述城市基础设施不平等的重要性,并为城市发展规划提供了量化指标。然而,现有的大多数方法都有两个局限性。首先,先前的研究提供了基础设施可能产生负面环境影响的经验证据,而基础设施提供不平等评估并未考虑到这些环境问题。其次,多基础设施系统的综合供应评估需要适当的权重分配,而目前的研究要么将基础设施组成部分确定为相等的权重,要么依赖于可能受到潜在偏差影响的主观方法(如AHP)。本研究提出了一种基于数据驱动的方法,将环境因素纳入量化和评估城市基础设施供应的新方法。我们应用了一种可解释的机器学习方法(XGBoost + SHAP)来捕捉基础设施特征与环境危害(即空气污染和城市热量)之间的关系,然后在计算基础设施供应时确定特征权重作为它们对环境危害的相对贡献。该模型在美国五个大都市地区的实施证明了所提出的方法在描述基础设施不平等方面的能力。此外,研究还揭示了基础设施提供方面的空间和收入不平等。本研究提出的环境一体化基础设施提供可以更好地捕捉基础设施发展与环境正义在衡量和表征城市基础设施不平等方面的交叉点。这项研究可以有效地用于为综合城市设计策略提供信息,以促进基于数据驱动和机器学习的见解的基础设施公平和环境正义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating environmental considerations into infrastructure inequality evaluation using interpretable machine learning
A growing body of literature has recognized the importance of characterizing infrastructure inequality in cities and provided quantified metrics to inform urban development plans. However, the majority of existing approaches suffered from two limitations. First, prior research has provided empirical evidence of negative environmental impacts that infrastructure can incur, while infrastructure provision inequality assessment has not taken those environmental concerns into consideration. Second, comprehensive provision assessment for multi-infrastructure system calls for a proper weight assignment, while current studies either determine the infrastructure components as equal weights or rely on subjective methods (e.g. AHP), which may be affected by potential biases. This study proposes a novel approach for incorporating environmental considerations into quantifying and assessing infrastructure provision in cities based on a data-driven method. We applied an interpretable machine learning method (XGBoost + SHAP) to capture the relationship between infrastructure features and environmental hazards (i.e., air pollution and urban heat), and then determined feature weights as their relative contributions towards environmental hazards when calculating infrastructure provision. The implementation of the model in five metropolitan areas in the U.S. demonstrates the capability of the proposed approach in characterizing inequality in infrastructure. Further the study reveals both spatial and income inequality regarding infrastructure provision. Environmentally integrated infrastructure provision proposed in this study can better capture the intersection of infrastructure development and environmental justice in measuring and characterizing infrastructure inequality in cities. This study could be used effectively to inform integrated urban design strategies to promote infrastructure equity and environmental justice based on data-driven and machine learning-based insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信