Jiankai Xie, Yi Jiang, Peiliang Shen, Yong Tao, Zihan Ma, Long Jiang, Miao Ren, Fa-Qian Liu, Chi Sun Poon
{"title":"从再生水泥浆中提取活性水晶石水泥:相变和硬化机理","authors":"Jiankai Xie, Yi Jiang, Peiliang Shen, Yong Tao, Zihan Ma, Long Jiang, Miao Ren, Fa-Qian Liu, Chi Sun Poon","doi":"10.1021/acssuschemeng.5c01042","DOIUrl":null,"url":null,"abstract":"Recycled cement paste powder (RCP) is a byproduct of crushing concrete waste, which is mostly disposed of at landfills due to its low reactivity. In this work, a vaterite cement (VC) was produced by the carbonation of RCP, and utilized as a low-carbon binder. The hardening behaviors, mechanical properties, phase evolution, and microstructural development of VC were investigated, and the hardening mechanism was revealed. Experimental results showed that VC can harden upon contact with water. The setting and strength development of the VC resulted from the phase transformation from spherical vaterite to prismatic calcite. A robust microstructure was developed during the process, connecting all of the particles by ionic bonding and contributing to the high mechanical performance of VC paste. The entire process could be divided into three stages: dissolution of the vaterite particle, the precipitation and agglomeration of nanocrystals, and the growth and maturation of calcite. Generally, VC is composed entirely of vaterite that could directly capture 0.44 kg CO<sub>2</sub> per kg of the cement. The production of VC not only is a promising approach to sequestering massive CO<sub>2</sub> in traditional cement production but also facilitates the recycling of concrete waste.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"52 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Vaterite Cement Derived from Recycled Cement Paste: Phase Transformation and Hardening Mechanism\",\"authors\":\"Jiankai Xie, Yi Jiang, Peiliang Shen, Yong Tao, Zihan Ma, Long Jiang, Miao Ren, Fa-Qian Liu, Chi Sun Poon\",\"doi\":\"10.1021/acssuschemeng.5c01042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycled cement paste powder (RCP) is a byproduct of crushing concrete waste, which is mostly disposed of at landfills due to its low reactivity. In this work, a vaterite cement (VC) was produced by the carbonation of RCP, and utilized as a low-carbon binder. The hardening behaviors, mechanical properties, phase evolution, and microstructural development of VC were investigated, and the hardening mechanism was revealed. Experimental results showed that VC can harden upon contact with water. The setting and strength development of the VC resulted from the phase transformation from spherical vaterite to prismatic calcite. A robust microstructure was developed during the process, connecting all of the particles by ionic bonding and contributing to the high mechanical performance of VC paste. The entire process could be divided into three stages: dissolution of the vaterite particle, the precipitation and agglomeration of nanocrystals, and the growth and maturation of calcite. Generally, VC is composed entirely of vaterite that could directly capture 0.44 kg CO<sub>2</sub> per kg of the cement. The production of VC not only is a promising approach to sequestering massive CO<sub>2</sub> in traditional cement production but also facilitates the recycling of concrete waste.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c01042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c01042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reactive Vaterite Cement Derived from Recycled Cement Paste: Phase Transformation and Hardening Mechanism
Recycled cement paste powder (RCP) is a byproduct of crushing concrete waste, which is mostly disposed of at landfills due to its low reactivity. In this work, a vaterite cement (VC) was produced by the carbonation of RCP, and utilized as a low-carbon binder. The hardening behaviors, mechanical properties, phase evolution, and microstructural development of VC were investigated, and the hardening mechanism was revealed. Experimental results showed that VC can harden upon contact with water. The setting and strength development of the VC resulted from the phase transformation from spherical vaterite to prismatic calcite. A robust microstructure was developed during the process, connecting all of the particles by ionic bonding and contributing to the high mechanical performance of VC paste. The entire process could be divided into three stages: dissolution of the vaterite particle, the precipitation and agglomeration of nanocrystals, and the growth and maturation of calcite. Generally, VC is composed entirely of vaterite that could directly capture 0.44 kg CO2 per kg of the cement. The production of VC not only is a promising approach to sequestering massive CO2 in traditional cement production but also facilitates the recycling of concrete waste.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.