高可逆金属镁阳极中Bi/ mg基杂化界面的原位形成

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingxuan Bi, Junhui Li, Zhenkai Zhou, Boxin Li, Ke Wang, Guowei Gao, Zhuzhu Du, Wei Ai, Wei Huang
{"title":"高可逆金属镁阳极中Bi/ mg基杂化界面的原位形成","authors":"Jingxuan Bi, Junhui Li, Zhenkai Zhou, Boxin Li, Ke Wang, Guowei Gao, Zhuzhu Du, Wei Ai, Wei Huang","doi":"10.1002/adma.202502098","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg) is a promising anode material for magnesium metal batteries (MMBs) owing to its high specific capacity, excellent safety profile, and abundant availability. However, pristine Mg anodes suffer from uneven plating/stripping and surface passivation/corrosion, limiting the safety and cycling stability of MMBs. This study introduces a Bi/Mg-based hybrid interphase protective layer on Mg foil (denoted Bi-Mg@Mg) through an in situ quasi-solid–solid redox reaction by immersing the foil in a bismuth oxybromide suspension. The resulting interphase layer consists of magnesiophilic components (Bi metal and Bi<sub>2</sub>Mg<sub>3</sub> alloy) and magnesiophobic species (MgO, MgBr<sub>2</sub>, and BiBr<sub>3</sub>). These components synergistically enhance the desolvation, nucleation, and deposition kinetics, mitigate side reactions, and promote uniform electric field and ion flux distributions. As a result, the Bi-Mg@Mg electrodes exhibit superior Mg plating/stripping reversibility, maintaining stable performance for over 4100 h in the all-phenyl complex electrolyte and 2900 h in the Mg(TFSI)<sub>2</sub> electrolyte, significantly outperforming pristine Mg electrodes. Furthermore, full cells paired with Mo<sub>6</sub>S<sub>8</sub> and <i>S</i> cathodes demonstrate excellent capacities, rate capabilities, and long lifespans, highlighting the exceptional electrochemical performance of the Bi-Mg@Mg anode. This study offers a promising strategy for developing highly reversible Mg anodes, paving the way for practical long-cycle MMBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"52 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Formation of a Bi/Mg-Based Hybrid Interphase for Highly Reversible Magnesium Metal Anodes\",\"authors\":\"Jingxuan Bi, Junhui Li, Zhenkai Zhou, Boxin Li, Ke Wang, Guowei Gao, Zhuzhu Du, Wei Ai, Wei Huang\",\"doi\":\"10.1002/adma.202502098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium (Mg) is a promising anode material for magnesium metal batteries (MMBs) owing to its high specific capacity, excellent safety profile, and abundant availability. However, pristine Mg anodes suffer from uneven plating/stripping and surface passivation/corrosion, limiting the safety and cycling stability of MMBs. This study introduces a Bi/Mg-based hybrid interphase protective layer on Mg foil (denoted Bi-Mg@Mg) through an in situ quasi-solid–solid redox reaction by immersing the foil in a bismuth oxybromide suspension. The resulting interphase layer consists of magnesiophilic components (Bi metal and Bi<sub>2</sub>Mg<sub>3</sub> alloy) and magnesiophobic species (MgO, MgBr<sub>2</sub>, and BiBr<sub>3</sub>). These components synergistically enhance the desolvation, nucleation, and deposition kinetics, mitigate side reactions, and promote uniform electric field and ion flux distributions. As a result, the Bi-Mg@Mg electrodes exhibit superior Mg plating/stripping reversibility, maintaining stable performance for over 4100 h in the all-phenyl complex electrolyte and 2900 h in the Mg(TFSI)<sub>2</sub> electrolyte, significantly outperforming pristine Mg electrodes. Furthermore, full cells paired with Mo<sub>6</sub>S<sub>8</sub> and <i>S</i> cathodes demonstrate excellent capacities, rate capabilities, and long lifespans, highlighting the exceptional electrochemical performance of the Bi-Mg@Mg anode. This study offers a promising strategy for developing highly reversible Mg anodes, paving the way for practical long-cycle MMBs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502098\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镁(Mg)具有高比容量、优异的安全性和丰富的可用性,是一种很有前途的镁金属电池负极材料。然而,原始镁阳极的镀层/剥离不均匀,表面钝化/腐蚀,限制了mmb的安全性和循环稳定性。本研究通过原位准固-固氧化还原反应,将铋/镁基杂化相保护层(表示为Bi-Mg@Mg)浸在氧化溴化铋悬浮液中。所得的间相层由亲镁组分(Bi金属和Bi2Mg3合金)和疏镁组分(MgO、MgBr2和BiBr3)组成。这些成分协同增强了脱溶、成核和沉积动力学,减轻了副反应,促进了均匀的电场和离子通量分布。结果,Bi-Mg@Mg电极表现出优异的Mg电镀/剥离可逆性,在全苯基络合电解质中保持稳定性能超过4100小时,在Mg(TFSI)2电解质中保持稳定性能2900小时,明显优于原始Mg电极。此外,与Mo6S8和S阴极配对的完整电池表现出出色的容量,速率能力和长寿命,突出了Bi-Mg@Mg阳极的卓越电化学性能。该研究为开发高可逆镁阳极提供了一个有希望的策略,为实际的长周期mmb铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Formation of a Bi/Mg-Based Hybrid Interphase for Highly Reversible Magnesium Metal Anodes

In Situ Formation of a Bi/Mg-Based Hybrid Interphase for Highly Reversible Magnesium Metal Anodes
Magnesium (Mg) is a promising anode material for magnesium metal batteries (MMBs) owing to its high specific capacity, excellent safety profile, and abundant availability. However, pristine Mg anodes suffer from uneven plating/stripping and surface passivation/corrosion, limiting the safety and cycling stability of MMBs. This study introduces a Bi/Mg-based hybrid interphase protective layer on Mg foil (denoted Bi-Mg@Mg) through an in situ quasi-solid–solid redox reaction by immersing the foil in a bismuth oxybromide suspension. The resulting interphase layer consists of magnesiophilic components (Bi metal and Bi2Mg3 alloy) and magnesiophobic species (MgO, MgBr2, and BiBr3). These components synergistically enhance the desolvation, nucleation, and deposition kinetics, mitigate side reactions, and promote uniform electric field and ion flux distributions. As a result, the Bi-Mg@Mg electrodes exhibit superior Mg plating/stripping reversibility, maintaining stable performance for over 4100 h in the all-phenyl complex electrolyte and 2900 h in the Mg(TFSI)2 electrolyte, significantly outperforming pristine Mg electrodes. Furthermore, full cells paired with Mo6S8 and S cathodes demonstrate excellent capacities, rate capabilities, and long lifespans, highlighting the exceptional electrochemical performance of the Bi-Mg@Mg anode. This study offers a promising strategy for developing highly reversible Mg anodes, paving the way for practical long-cycle MMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信