{"title":"长链非编码RNA LRTOR通过促进YAP正反馈回路驱动非小细胞肺癌的奥西替尼耐药","authors":"Zhimin Miao, Zhou Sha, Jianzhong He, Yongkai Liang, Lihua Tan, Yuxin Zhao, Xiaobing Cui, Jinmiao Zhong, Ruting Zhong, Huijun Liang, Wendi Yue, Boyang Qiu, Yunzhen Gao, Lan Zhang, Zixin Teng, Zeen He, Li Chen, Rufei Xiao, Xiaofeng Pei, Chengwei He","doi":"10.1016/j.drup.2025.101245","DOIUrl":null,"url":null,"abstract":"The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic>. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long non-coding RNA LRTOR drives osimertinib resistance in non-small cell lung cancer by boosting YAP positive feedback loop\",\"authors\":\"Zhimin Miao, Zhou Sha, Jianzhong He, Yongkai Liang, Lihua Tan, Yuxin Zhao, Xiaobing Cui, Jinmiao Zhong, Ruting Zhong, Huijun Liang, Wendi Yue, Boyang Qiu, Yunzhen Gao, Lan Zhang, Zixin Teng, Zeen He, Li Chen, Rufei Xiao, Xiaofeng Pei, Chengwei He\",\"doi\":\"10.1016/j.drup.2025.101245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic>. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.drup.2025.101245\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.drup.2025.101245","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Long non-coding RNA LRTOR drives osimertinib resistance in non-small cell lung cancer by boosting YAP positive feedback loop
The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both in vitro and in vivo. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research