在钙钛矿太阳能电池中,埋藏界面的分子桥接使晶界沟槽平坦,并赋予应力松弛以提高性能和紫外线稳定性

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wei Cheng, Peng Huang, Zhijie Gao, Yansheng Chen, Linying Ren, Qingguo Feng, Xiaodong Liu, Shahzada Ahmad, Zuowan Zhou
{"title":"在钙钛矿太阳能电池中,埋藏界面的分子桥接使晶界沟槽平坦,并赋予应力松弛以提高性能和紫外线稳定性","authors":"Wei Cheng, Peng Huang, Zhijie Gao, Yansheng Chen, Linying Ren, Qingguo Feng, Xiaodong Liu, Shahzada Ahmad, Zuowan Zhou","doi":"10.1002/aenm.202501296","DOIUrl":null,"url":null,"abstract":"The limitations imposed by interfacial voids and residual stress fundamentally constrain the stability and performance ceiling of perovskite solar cells (PSCs). Herein, the study engineers a molecular bridge by the placement of ectoine (Ec) at the SnO<sub>2</sub>/perovskite interface. The experimental investigations coupled with first-principles density functional theory (DFT) calculations reveal that the carboxyl group preferentially passivates uncoordinated Sn<sup>4+</sup> defects and oxygen vacancies in SnO<sub>2</sub>, while the imine group establishes robust coordination with Pb<sup>2</sup>⁺ ions in the perovskite to passivate uncoordinated Pb<sup>2+</sup> defects. The bi-anchoring molecular bridging mechanism facilitates the residual stress release, flattens the grain boundary grooves, and significantly suppresses the nonradiative recombination. In turn, the Ec-modified PSCs achieve a power conversion efficiency (PCE) of 24.68% (vs 22.56% for control). Significantly, the unencapsulated PSCs with the Ec show improved UV stability, retaining 80.12% of the initial PCE after 130 h (equivalent to 1412 h of solar irradiation) under 365 nm ultraviolet irradiation (50 mW cm<sup>−2</sup>). The study uncovers the role of Ec as a molecular bridge to optimize the buried interface for effective yet stable solar cell fabrication.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"18 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Bridging of Buried Interface Flattens Grain Boundary Grooves and Imparts Stress Relaxation for Performance Enhancement and UV Stability in Perovskite Solar Cells\",\"authors\":\"Wei Cheng, Peng Huang, Zhijie Gao, Yansheng Chen, Linying Ren, Qingguo Feng, Xiaodong Liu, Shahzada Ahmad, Zuowan Zhou\",\"doi\":\"10.1002/aenm.202501296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limitations imposed by interfacial voids and residual stress fundamentally constrain the stability and performance ceiling of perovskite solar cells (PSCs). Herein, the study engineers a molecular bridge by the placement of ectoine (Ec) at the SnO<sub>2</sub>/perovskite interface. The experimental investigations coupled with first-principles density functional theory (DFT) calculations reveal that the carboxyl group preferentially passivates uncoordinated Sn<sup>4+</sup> defects and oxygen vacancies in SnO<sub>2</sub>, while the imine group establishes robust coordination with Pb<sup>2</sup>⁺ ions in the perovskite to passivate uncoordinated Pb<sup>2+</sup> defects. The bi-anchoring molecular bridging mechanism facilitates the residual stress release, flattens the grain boundary grooves, and significantly suppresses the nonradiative recombination. In turn, the Ec-modified PSCs achieve a power conversion efficiency (PCE) of 24.68% (vs 22.56% for control). Significantly, the unencapsulated PSCs with the Ec show improved UV stability, retaining 80.12% of the initial PCE after 130 h (equivalent to 1412 h of solar irradiation) under 365 nm ultraviolet irradiation (50 mW cm<sup>−2</sup>). The study uncovers the role of Ec as a molecular bridge to optimize the buried interface for effective yet stable solar cell fabrication.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501296\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501296","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

界面空隙和残余应力的限制从根本上限制了钙钛矿太阳能电池(PSCs)的稳定性和性能上限。在此,该研究通过在SnO2/钙钛矿界面上放置ectoine (Ec)来设计分子桥。实验研究结合第一原理密度泛函理论(DFT)计算表明,羧基优先钝化SnO2中的非配位Sn4+缺陷和氧空位,而亚胺基与钙钛矿中的Pb2+离子建立了强健的配位,以钝化非配位Pb2+缺陷。双锚定分子桥接机制有利于残余应力释放,使晶界沟槽变平,显著抑制非辐射复合。反过来,ec修饰的PSCs实现了24.68%的功率转换效率(PCE)(对照组为22.56%)。值得注意的是,含有Ec的未封装PSCs在365 nm紫外线照射(50 mW cm - 2)下,经过130小时(相当于1412小时)的太阳照射后,其PCE保持在初始值的80.12%。该研究揭示了Ec作为优化埋藏界面的分子桥的作用,从而有效而稳定地制造太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Bridging of Buried Interface Flattens Grain Boundary Grooves and Imparts Stress Relaxation for Performance Enhancement and UV Stability in Perovskite Solar Cells

Molecular Bridging of Buried Interface Flattens Grain Boundary Grooves and Imparts Stress Relaxation for Performance Enhancement and UV Stability in Perovskite Solar Cells
The limitations imposed by interfacial voids and residual stress fundamentally constrain the stability and performance ceiling of perovskite solar cells (PSCs). Herein, the study engineers a molecular bridge by the placement of ectoine (Ec) at the SnO2/perovskite interface. The experimental investigations coupled with first-principles density functional theory (DFT) calculations reveal that the carboxyl group preferentially passivates uncoordinated Sn4+ defects and oxygen vacancies in SnO2, while the imine group establishes robust coordination with Pb2⁺ ions in the perovskite to passivate uncoordinated Pb2+ defects. The bi-anchoring molecular bridging mechanism facilitates the residual stress release, flattens the grain boundary grooves, and significantly suppresses the nonradiative recombination. In turn, the Ec-modified PSCs achieve a power conversion efficiency (PCE) of 24.68% (vs 22.56% for control). Significantly, the unencapsulated PSCs with the Ec show improved UV stability, retaining 80.12% of the initial PCE after 130 h (equivalent to 1412 h of solar irradiation) under 365 nm ultraviolet irradiation (50 mW cm−2). The study uncovers the role of Ec as a molecular bridge to optimize the buried interface for effective yet stable solar cell fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信