复合凝胶聚合物电解质对高电压、高负载准固态锂金属电池离子输运的直接配位调控

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyang Ye, Yuji Zhang, Yiheng Huang, Yan Li, Zhaojie Li, Chuan Ou, Minghui Lin, Fei Tian, Danni Lei, Chengxin Wang
{"title":"复合凝胶聚合物电解质对高电压、高负载准固态锂金属电池离子输运的直接配位调控","authors":"Siyang Ye, Yuji Zhang, Yiheng Huang, Yan Li, Zhaojie Li, Chuan Ou, Minghui Lin, Fei Tian, Danni Lei, Chengxin Wang","doi":"10.1002/anie.202506662","DOIUrl":null,"url":null,"abstract":"Poly(ethylene oxide)‐based composite gel polymer electrolyte is widely used in lithium metal batteries to address dendrite growth and side reactions. However, the low oxidative decomposition potential (< 4 V) of poly(ethylene oxide) limits the cyclic stability with Ni‐rich layered cathodes. What’s more, poor interface compatibility between fillers and polymer severely deteriorates lithium‐ion pathways, which cannot achieve lithium metal batteries with high‐load cathode. Herein, polyether monomers coordinate with aluminum ethoxide nanowires via in‐situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium‐ion conduction pathways, contributing to ordered lithium‐ion fluxes and dendrite‐free deposition on the lithium anode. In addition, a robust solid electrolyte interphase containing aluminum‐based species enhances the interfacial stability of lithium anode. Meanwhile, the good compatibility between the electrolyte and the cathode effectively suppresses side reactions and contributes to the structural stabilization of the cycled cathode. The delicate design allows the Li||LiNi0.6Co0.2Mn0.2O2 cells to present excellent cycling stability from −20 oC to 60 oC. Specially, cells with 8.8 mg cm−2 cathode cycle stably for over 120 cycles. This molecular structure engineering will greatly promote the practical application of solid‐state lithium metal batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"15 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Ion Transport through Direct Coordination in Composite Gel Polymer Electrolytes towards High‐voltage and High‐loading Quasi‐solid‐state Lithium Metal Batteries\",\"authors\":\"Siyang Ye, Yuji Zhang, Yiheng Huang, Yan Li, Zhaojie Li, Chuan Ou, Minghui Lin, Fei Tian, Danni Lei, Chengxin Wang\",\"doi\":\"10.1002/anie.202506662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly(ethylene oxide)‐based composite gel polymer electrolyte is widely used in lithium metal batteries to address dendrite growth and side reactions. However, the low oxidative decomposition potential (< 4 V) of poly(ethylene oxide) limits the cyclic stability with Ni‐rich layered cathodes. What’s more, poor interface compatibility between fillers and polymer severely deteriorates lithium‐ion pathways, which cannot achieve lithium metal batteries with high‐load cathode. Herein, polyether monomers coordinate with aluminum ethoxide nanowires via in‐situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium‐ion conduction pathways, contributing to ordered lithium‐ion fluxes and dendrite‐free deposition on the lithium anode. In addition, a robust solid electrolyte interphase containing aluminum‐based species enhances the interfacial stability of lithium anode. Meanwhile, the good compatibility between the electrolyte and the cathode effectively suppresses side reactions and contributes to the structural stabilization of the cycled cathode. The delicate design allows the Li||LiNi0.6Co0.2Mn0.2O2 cells to present excellent cycling stability from −20 oC to 60 oC. Specially, cells with 8.8 mg cm−2 cathode cycle stably for over 120 cycles. This molecular structure engineering will greatly promote the practical application of solid‐state lithium metal batteries.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202506662\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506662","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚(环氧乙烷)基复合凝胶聚合物电解质广泛应用于锂金属电池中,以解决枝晶生长和副反应。然而,较低的氧化分解电位(<;4 V)的聚环氧乙烷限制了富镍层状阴极的循环稳定性。此外,填料与聚合物的界面相容性差严重影响了锂离子通道,无法实现高负载负极的锂金属电池。在这里,聚醚单体通过原位紫外线固化与氧化铝纳米线配合,稳定了以太氧原子的孤对电子,抑制了氧化降解。这种配位还形成了丰富而紧密的界面,作为主要的锂离子传导途径,有助于有序的锂离子通量和在锂阳极上的无枝晶沉积。此外,含有铝基物质的坚固固体电解质界面相增强了锂阳极的界面稳定性。同时,电解质与阴极之间良好的相容性有效抑制了副反应,有利于循环阴极结构的稳定。精巧的设计使Li||LiNi0.6Co0.2Mn0.2O2电池在−20℃至60℃范围内具有优异的循环稳定性。特别是,8.8 mg cm−2阴极的电池可以稳定地循环120次以上。这一分子结构工程将极大地促进固态锂金属电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulating Ion Transport through Direct Coordination in Composite Gel Polymer Electrolytes towards High‐voltage and High‐loading Quasi‐solid‐state Lithium Metal Batteries
Poly(ethylene oxide)‐based composite gel polymer electrolyte is widely used in lithium metal batteries to address dendrite growth and side reactions. However, the low oxidative decomposition potential (< 4 V) of poly(ethylene oxide) limits the cyclic stability with Ni‐rich layered cathodes. What’s more, poor interface compatibility between fillers and polymer severely deteriorates lithium‐ion pathways, which cannot achieve lithium metal batteries with high‐load cathode. Herein, polyether monomers coordinate with aluminum ethoxide nanowires via in‐situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium‐ion conduction pathways, contributing to ordered lithium‐ion fluxes and dendrite‐free deposition on the lithium anode. In addition, a robust solid electrolyte interphase containing aluminum‐based species enhances the interfacial stability of lithium anode. Meanwhile, the good compatibility between the electrolyte and the cathode effectively suppresses side reactions and contributes to the structural stabilization of the cycled cathode. The delicate design allows the Li||LiNi0.6Co0.2Mn0.2O2 cells to present excellent cycling stability from −20 oC to 60 oC. Specially, cells with 8.8 mg cm−2 cathode cycle stably for over 120 cycles. This molecular structure engineering will greatly promote the practical application of solid‐state lithium metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信