通过类金属硼修饰Zn3In2S6解锁一步二电子氧还原,实现高效H2O2光合作用

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ji-Li Zhou, Yan-Fei Mu, Meng Qiao, Meng-Ran Zhang, Su-Xian Yuan, Min Zhang, Tong-Bu Lu
{"title":"通过类金属硼修饰Zn3In2S6解锁一步二电子氧还原,实现高效H2O2光合作用","authors":"Ji-Li Zhou, Yan-Fei Mu, Meng Qiao, Meng-Ran Zhang, Su-Xian Yuan, Min Zhang, Tong-Bu Lu","doi":"10.1002/anie.202506963","DOIUrl":null,"url":null,"abstract":"The indirect two‐step two‐electron oxygen reduction reaction (2e− ORR) dominates photocatalytic H2O2 synthesis but suffers form sluggish kinetics, •O2−‐induced catalyst degradation, and spatiotemporal carrier‐intermediate mismatch. Herein, we pioneer a metal‐metalloid dual‐site strategy to unlock the direct one‐step 2e− ORR pathway, demonstrated through boron‐engineered Zn3In2S6 (B‐ZnInS) photocatalyst with In‐B dual‐active sites. The In‐B dual‐site configuration creates a charge‐balanced electron reservoir by charge complementation, which achieves moderate O2 adsorption via bidentate coordination and dual‐channel electron transfer, preventing excessive O−O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built‐in electric field, quintupling photogenerated carrier lifetimes versus pristine ZnInS. These synergies redirect the O2 activation pathway from indirect to direct 2e− ORR process, delivering an exceptional H2O2 production rate of 3121 μmol g−1 h−1 in pure water under simulated AM 1.5G illumination (100 mW cm−2)—an 11‐fold enhancement over ZnInS. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H2O2 photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical‐grade H2O2 (3 wt%). This work provides insights for designing efficient H2O2 photocatalysts and beyond.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"112 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking One‐Step Two‐Electron Oxygen Reduction via Metalloid Boron‐Modified Zn3In2S6 for Efficient H2O2 Photosynthesis\",\"authors\":\"Ji-Li Zhou, Yan-Fei Mu, Meng Qiao, Meng-Ran Zhang, Su-Xian Yuan, Min Zhang, Tong-Bu Lu\",\"doi\":\"10.1002/anie.202506963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indirect two‐step two‐electron oxygen reduction reaction (2e− ORR) dominates photocatalytic H2O2 synthesis but suffers form sluggish kinetics, •O2−‐induced catalyst degradation, and spatiotemporal carrier‐intermediate mismatch. Herein, we pioneer a metal‐metalloid dual‐site strategy to unlock the direct one‐step 2e− ORR pathway, demonstrated through boron‐engineered Zn3In2S6 (B‐ZnInS) photocatalyst with In‐B dual‐active sites. The In‐B dual‐site configuration creates a charge‐balanced electron reservoir by charge complementation, which achieves moderate O2 adsorption via bidentate coordination and dual‐channel electron transfer, preventing excessive O−O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built‐in electric field, quintupling photogenerated carrier lifetimes versus pristine ZnInS. These synergies redirect the O2 activation pathway from indirect to direct 2e− ORR process, delivering an exceptional H2O2 production rate of 3121 μmol g−1 h−1 in pure water under simulated AM 1.5G illumination (100 mW cm−2)—an 11‐fold enhancement over ZnInS. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H2O2 photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical‐grade H2O2 (3 wt%). This work provides insights for designing efficient H2O2 photocatalysts and beyond.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202506963\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

间接两步双电子氧还原反应(2e - ORR)在光催化H2O2合成中占主导地位,但存在动力学迟缓、•O2 -诱导的催化剂降解和时空载流子-中间体失配等问题。在此,我们开创了一种金属-类金属双位点策略,通过硼工程的具有In - B双活性位点的Zn3In2S6 (B - ZnInS)光催化剂来解锁直接的一步2e - ORR途径。In - B双位点结构通过电荷互补形成电荷平衡的电子储层,通过双齿配位和双通道电子转移实现适度的O2吸附,防止过度的O - O键激活。同时,硼掺杂诱导晶格极化以建立一个内置电场,使光生载流子寿命比原始ZnInS增加了五倍。这些协同作用将O2激活途径从间接转向直接2e - ORR过程,在模拟AM 1.5G照明(100 mW cm - 2)下,在纯水中产生3121 μmol g - 1 h - 1的H2O2产率,比ZnInS提高了11倍。在无机半导体光催化剂中,该系统在365 nm下实现了前所未有的表观量子产率49.8%,并且可以连续生产医疗级H2O2 (3 wt%)。这项工作为设计高效的H2O2光催化剂及其他方面提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking One‐Step Two‐Electron Oxygen Reduction via Metalloid Boron‐Modified Zn3In2S6 for Efficient H2O2 Photosynthesis
The indirect two‐step two‐electron oxygen reduction reaction (2e− ORR) dominates photocatalytic H2O2 synthesis but suffers form sluggish kinetics, •O2−‐induced catalyst degradation, and spatiotemporal carrier‐intermediate mismatch. Herein, we pioneer a metal‐metalloid dual‐site strategy to unlock the direct one‐step 2e− ORR pathway, demonstrated through boron‐engineered Zn3In2S6 (B‐ZnInS) photocatalyst with In‐B dual‐active sites. The In‐B dual‐site configuration creates a charge‐balanced electron reservoir by charge complementation, which achieves moderate O2 adsorption via bidentate coordination and dual‐channel electron transfer, preventing excessive O−O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built‐in electric field, quintupling photogenerated carrier lifetimes versus pristine ZnInS. These synergies redirect the O2 activation pathway from indirect to direct 2e− ORR process, delivering an exceptional H2O2 production rate of 3121 μmol g−1 h−1 in pure water under simulated AM 1.5G illumination (100 mW cm−2)—an 11‐fold enhancement over ZnInS. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H2O2 photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical‐grade H2O2 (3 wt%). This work provides insights for designing efficient H2O2 photocatalysts and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信