Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher
{"title":"碱性介质中苯甲醛对铜的电催化转化","authors":"Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher","doi":"10.1016/j.jcat.2025.116164","DOIUrl":null,"url":null,"abstract":"Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\" viewbox=\"-38.5 -747.2 1430.5 997.6\" width=\"3.322ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use><use x=\"503\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">pH</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math></script></span> varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (>84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H<sub>2</sub> evolution on Cu/C in alkaline conditions is the dissociation of H<sub>2</sub>O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H<sub>2</sub>O molecules act as the proton source, forming OH<sup>–</sup> in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H<sub>2</sub>O compared to H<sub>3</sub>O<sup>+</sup>. Increasing electrolyte <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\" viewbox=\"-38.5 -747.2 1430.5 997.6\" width=\"3.322ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use><use x=\"503\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">pH</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math></script></span>, concentration of Na<sup>+</sup> cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"27 1","pages":"116164"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic conversion of benzaldehyde on Cu in alkaline media\",\"authors\":\"Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher\",\"doi\":\"10.1016/j.jcat.2025.116164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\\\" viewbox=\\\"-38.5 -747.2 1430.5 997.6\\\" width=\\\"3.322ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-70\\\"></use><use x=\\\"503\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">pH</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math></script></span> varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (>84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H<sub>2</sub> evolution on Cu/C in alkaline conditions is the dissociation of H<sub>2</sub>O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H<sub>2</sub>O molecules act as the proton source, forming OH<sup>–</sup> in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H<sub>2</sub>O compared to H<sub>3</sub>O<sup>+</sup>. Increasing electrolyte <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\\\" viewbox=\\\"-38.5 -747.2 1430.5 997.6\\\" width=\\\"3.322ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-70\\\"></use><use x=\\\"503\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">pH</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math></script></span>, concentration of Na<sup>+</sup> cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"27 1\",\"pages\":\"116164\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2025.116164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrocatalytic conversion of benzaldehyde on Cu in alkaline media
Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes ( varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (>84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H2 evolution on Cu/C in alkaline conditions is the dissociation of H2O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H2O molecules act as the proton source, forming OH– in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H2O compared to H3O+. Increasing electrolyte , concentration of Na+ cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.