碱性介质中苯甲醛对铜的电催化转化

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher
{"title":"碱性介质中苯甲醛对铜的电催化转化","authors":"Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher","doi":"10.1016/j.jcat.2025.116164","DOIUrl":null,"url":null,"abstract":"Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;pH&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\" viewbox=\"-38.5 -747.2 1430.5 997.6\" width=\"3.322ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use><use x=\"503\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">pH</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math></script></span> varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (&gt;84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H<sub>2</sub> evolution on Cu/C in alkaline conditions is the dissociation of H<sub>2</sub>O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H<sub>2</sub>O molecules act as the proton source, forming OH<sup>–</sup> in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H<sub>2</sub>O compared to H<sub>3</sub>O<sup>+</sup>. Increasing electrolyte <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;pH&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\" viewbox=\"-38.5 -747.2 1430.5 997.6\" width=\"3.322ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use><use x=\"503\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">pH</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">pH</mi></mrow></math></script></span>, concentration of Na<sup>+</sup> cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"27 1","pages":"116164"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic conversion of benzaldehyde on Cu in alkaline media\",\"authors\":\"Hongwen Chen, Jayendran Iyer, Yue Ma, Hui Chen, Sungmin Kim, Debra J. Searles, M. Ali Haider, Rachit Khare, Johannes A. Lercher\",\"doi\":\"10.1016/j.jcat.2025.116164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"italic\\\" is=\\\"true\\\"&gt;pH&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\\\" viewbox=\\\"-38.5 -747.2 1430.5 997.6\\\" width=\\\"3.322ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-70\\\"></use><use x=\\\"503\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">pH</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math></script></span> varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (&gt;84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H<sub>2</sub> evolution on Cu/C in alkaline conditions is the dissociation of H<sub>2</sub>O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H<sub>2</sub>O molecules act as the proton source, forming OH<sup>–</sup> in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H<sub>2</sub>O compared to H<sub>3</sub>O<sup>+</sup>. Increasing electrolyte <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"italic\\\" is=\\\"true\\\"&gt;pH&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex; margin-left: -0.089ex; margin-right: -0.132ex;\\\" viewbox=\\\"-38.5 -747.2 1430.5 997.6\\\" width=\\\"3.322ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-70\\\"></use><use x=\\\"503\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">pH</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">pH</mi></mrow></math></script></span>, concentration of Na<sup>+</sup> cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"27 1\",\"pages\":\"116164\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2025.116164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在碱性电解质(pHpH 8.6 ~ 12.3)中,苯甲醛(BZ)在Cu/C上的水相电化学加氢(ECH)生成C=O加氢产物苯甲醇(BA)和碳-碳偶联产物对C - C偶联具有高的法拉第选择性(>84 %)和高的法拉第效率。BA形成的速率决定步骤是在表面羟基中间体的α-C自由基上第二次加氢,而HB形成的速率决定步骤是在吸附的BZ分子的羰基O上第一次加氢。随后的C-C键形成和第二次H加成(HB形成)速度很快。在没有BZ的情况下(即在纯电解质中),碱性条件下Cu/C上H2析出的速率决定步骤是电极表面的H2O解离形成表面H*(即Volmer步骤)。氢加成主要通过质子耦合电子转移(PCET)型机制发生,其中H2O分子作为质子源,在此过程中形成OH -。与酸性介质相比,碱性介质对C-C偶联的高选择性是由于H2O的质子化能力弱于h30 +,导致H加成动力学缓慢。在保持高C-C偶联选择性的同时,增加电解液ph、Na+阳离子浓度或施加外部过电位对BZ ECH速率有积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrocatalytic conversion of benzaldehyde on Cu in alkaline media

Electrocatalytic conversion of benzaldehyde on Cu in alkaline media
Aqueous phase electrochemical hydrogenation (ECH) of benzaldehyde (BZ) on Cu/C in alkaline electrolytes (pH varying between 8.6 and 12.3) forms both benzyl alcohol (BA), the C=O hydrogenation product, and hydrobenzoin (HB), the carbon–carbon coupling product, with high Faradaic selectivity towards C–C coupling (>84 %) and high Faradaic efficiency. The rate-determining step for BA formation is the second H addition to the radical α-C of the surface hydroxy intermediate, while that for HB formation is the first H addition to the carbonyl O of an adsorbed BZ molecule. The subsequent C–C bond formation and second H addition (for HB formation) are fast. In the absence of BZ (i.e., in pure electrolyte), the rate-determining step for H2 evolution on Cu/C in alkaline conditions is the dissociation of H2O on the electrode’s surface to form surface H* (i.e., the Volmer step). The H addition occurs primarily via a proton-coupled electron-transfer (PCET)-type mechanism wherein H2O molecules act as the proton source, forming OH in the process. The high selectivity towards C–C coupling in alkaline media, compared to acidic media, is attributed to the slow H addition kinetics caused by the weaker protonation ability of H2O compared to H3O+. Increasing electrolyte pH, concentration of Na+ cations, or the applied external overpotential positively influences the BZ ECH rates while maintaining high C–C coupling selectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信