谷氨酰胺桥接在SnO2/钙钛矿界面用于钙钛矿太阳能电池的能级排列和载流子转移增强

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mei Lyu , Shengquan Shan , Jihao Ma , Wenchao Xing , Yongxiang Zhang , Yinfeng Zhang , Lun Zhang , Pujun Niu , Mengjie Dai , Jun Zhu
{"title":"谷氨酰胺桥接在SnO2/钙钛矿界面用于钙钛矿太阳能电池的能级排列和载流子转移增强","authors":"Mei Lyu ,&nbsp;Shengquan Shan ,&nbsp;Jihao Ma ,&nbsp;Wenchao Xing ,&nbsp;Yongxiang Zhang ,&nbsp;Yinfeng Zhang ,&nbsp;Lun Zhang ,&nbsp;Pujun Niu ,&nbsp;Mengjie Dai ,&nbsp;Jun Zhu","doi":"10.1016/j.apsusc.2025.163420","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) encounter challenges in power conversion efficiency (PCE) and stability due to defects at the electronic transport layer (ETL)/perovskite interface. In this work, glutamine (Glu) is employed as a bridge-connecting layer in SnO<sub>2</sub>/perovskite(Cs<sub>0.05</sub>FA<sub>0.95</sub>PbI<sub>3</sub>) interface to passivate the complicated defects from SnO<sub>2</sub> and buried perovskite surface simultaneously. Glu modification increases electrical conductivity and shifts up the Fermi level of SnO<sub>2</sub> films facilitating electron transport through amide group interacting with the Sn-related defects and absorbed hydroxyl on SnO<sub>2</sub> surface. On the other hand, the carboxyl group inclined anchors uncoordinated Pb<sup>2+</sup> and I<sup>-</sup> on buried perovskite interface to cure point defects and regulate nucleation achieving high-quality perovskite films. Surprisingly, the device under the bridge-connecting of Glu with multiple groups obtains a marked short current density of 26.10 mA/cm<sup>2</sup> and a champion power conversion efficiency of 23.40 %. In addition, the unencapsulated PSCs with optimized Glu exhibit gratifying humidity stability, sustaining 87 % of their initial PCE after exposing to highly relative humidity (65 ± 5 %) for 750 h.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"703 ","pages":"Article 163420"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells\",\"authors\":\"Mei Lyu ,&nbsp;Shengquan Shan ,&nbsp;Jihao Ma ,&nbsp;Wenchao Xing ,&nbsp;Yongxiang Zhang ,&nbsp;Yinfeng Zhang ,&nbsp;Lun Zhang ,&nbsp;Pujun Niu ,&nbsp;Mengjie Dai ,&nbsp;Jun Zhu\",\"doi\":\"10.1016/j.apsusc.2025.163420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite solar cells (PSCs) encounter challenges in power conversion efficiency (PCE) and stability due to defects at the electronic transport layer (ETL)/perovskite interface. In this work, glutamine (Glu) is employed as a bridge-connecting layer in SnO<sub>2</sub>/perovskite(Cs<sub>0.05</sub>FA<sub>0.95</sub>PbI<sub>3</sub>) interface to passivate the complicated defects from SnO<sub>2</sub> and buried perovskite surface simultaneously. Glu modification increases electrical conductivity and shifts up the Fermi level of SnO<sub>2</sub> films facilitating electron transport through amide group interacting with the Sn-related defects and absorbed hydroxyl on SnO<sub>2</sub> surface. On the other hand, the carboxyl group inclined anchors uncoordinated Pb<sup>2+</sup> and I<sup>-</sup> on buried perovskite interface to cure point defects and regulate nucleation achieving high-quality perovskite films. Surprisingly, the device under the bridge-connecting of Glu with multiple groups obtains a marked short current density of 26.10 mA/cm<sup>2</sup> and a champion power conversion efficiency of 23.40 %. In addition, the unencapsulated PSCs with optimized Glu exhibit gratifying humidity stability, sustaining 87 % of their initial PCE after exposing to highly relative humidity (65 ± 5 %) for 750 h.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"703 \",\"pages\":\"Article 163420\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225011353\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225011353","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池(PSCs)由于电子传输层(ETL)/钙钛矿界面的缺陷,在功率转换效率(PCE)和稳定性方面面临挑战。本文采用谷氨酰胺(Glu)作为桥接层,在SnO2/钙钛矿(Cs0.05FA0.95PbI3)界面上同时钝化SnO2和埋藏的钙钛矿表面的复杂缺陷。Glu修饰提高了SnO2薄膜的电导率,提高了费米能级,促进了电子通过酰胺基团与SnO2表面sn相关缺陷和吸收羟基相互作用的传递。另一方面,羧基倾斜将不配位的Pb2+和I-锚定在埋藏的钙钛矿界面上,以治愈点缺陷并调节成核,从而获得高质量的钙钛矿膜。令人惊讶的是,在Glu多基团桥接下的器件获得了26.10 mA/cm2的显着短电流密度和23.40 %的冠军功率转换效率。此外,具有优化Glu的未封装PSCs表现出令人满意的湿度稳定性,在暴露于高相对湿度(65 ± 5 %)750 h后,其初始PCE维持在87 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells

Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells

Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells
Perovskite solar cells (PSCs) encounter challenges in power conversion efficiency (PCE) and stability due to defects at the electronic transport layer (ETL)/perovskite interface. In this work, glutamine (Glu) is employed as a bridge-connecting layer in SnO2/perovskite(Cs0.05FA0.95PbI3) interface to passivate the complicated defects from SnO2 and buried perovskite surface simultaneously. Glu modification increases electrical conductivity and shifts up the Fermi level of SnO2 films facilitating electron transport through amide group interacting with the Sn-related defects and absorbed hydroxyl on SnO2 surface. On the other hand, the carboxyl group inclined anchors uncoordinated Pb2+ and I- on buried perovskite interface to cure point defects and regulate nucleation achieving high-quality perovskite films. Surprisingly, the device under the bridge-connecting of Glu with multiple groups obtains a marked short current density of 26.10 mA/cm2 and a champion power conversion efficiency of 23.40 %. In addition, the unencapsulated PSCs with optimized Glu exhibit gratifying humidity stability, sustaining 87 % of their initial PCE after exposing to highly relative humidity (65 ± 5 %) for 750 h.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信