非线性光学微谐振器的终极效率变频

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhi-Yan Wang, Xiao Wu, Xiao Xiong, Chen Yang, Zhenzhong Hao, Qi-Fan Yang, Yaowen Hu, Fang Bo, Qi-Tao Cao, Yun-Feng Xiao
{"title":"非线性光学微谐振器的终极效率变频","authors":"Zhi-Yan Wang,&nbsp;Xiao Wu,&nbsp;Xiao Xiong,&nbsp;Chen Yang,&nbsp;Zhenzhong Hao,&nbsp;Qi-Fan Yang,&nbsp;Yaowen Hu,&nbsp;Fang Bo,&nbsp;Qi-Tao Cao,&nbsp;Yun-Feng Xiao","doi":"10.1126/sciadv.adu7605","DOIUrl":null,"url":null,"abstract":"<div >Integrated nonlinear photonics has emerged as a transformative platform, enabling nanoscale nonlinear optical processes with substantial implications. Achieving efficient nonlinear frequency conversion in microresonators is paramount to fully unlocking this potential, yet the absolute conversion efficiency (ACE) remains fundamentally constrained by dissipative losses and intrinsic nonlinear effects. In this work, we establish a unified framework for second harmonic generation in microresonators, identifying a decisive factor <i>M</i> that predicts the ACE limit under the nonlinear critical coupling (NCC) condition. Using this framework, we fabricate periodically poled lithium niobate microresonators and address the dispersive-dissipative suppression to approach the NCC condition. We achieve a record-high ACE of 61.3% with milliwatt-level pump powers toward the ultimate efficiency, with the potential for higher efficiency as the <i>M</i> factor increases. These results provide a versatile paradigm for high-efficiency nonlinear optical devices, offering opportunities for advancements across classical and quantum photonic applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu7605","citationCount":"0","resultStr":"{\"title\":\"Toward ultimate-efficiency frequency conversion in nonlinear optical microresonators\",\"authors\":\"Zhi-Yan Wang,&nbsp;Xiao Wu,&nbsp;Xiao Xiong,&nbsp;Chen Yang,&nbsp;Zhenzhong Hao,&nbsp;Qi-Fan Yang,&nbsp;Yaowen Hu,&nbsp;Fang Bo,&nbsp;Qi-Tao Cao,&nbsp;Yun-Feng Xiao\",\"doi\":\"10.1126/sciadv.adu7605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Integrated nonlinear photonics has emerged as a transformative platform, enabling nanoscale nonlinear optical processes with substantial implications. Achieving efficient nonlinear frequency conversion in microresonators is paramount to fully unlocking this potential, yet the absolute conversion efficiency (ACE) remains fundamentally constrained by dissipative losses and intrinsic nonlinear effects. In this work, we establish a unified framework for second harmonic generation in microresonators, identifying a decisive factor <i>M</i> that predicts the ACE limit under the nonlinear critical coupling (NCC) condition. Using this framework, we fabricate periodically poled lithium niobate microresonators and address the dispersive-dissipative suppression to approach the NCC condition. We achieve a record-high ACE of 61.3% with milliwatt-level pump powers toward the ultimate efficiency, with the potential for higher efficiency as the <i>M</i> factor increases. These results provide a versatile paradigm for high-efficiency nonlinear optical devices, offering opportunities for advancements across classical and quantum photonic applications.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu7605\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu7605\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu7605","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

集成非线性光子学已经成为一个变革性的平台,使纳米级非线性光学过程具有重大意义。在微谐振器中实现有效的非线性频率转换对于充分释放这一潜力至关重要,但绝对转换效率(ACE)仍然受到耗散损耗和固有非线性效应的基本限制。在这项工作中,我们建立了微谐振器中二次谐波产生的统一框架,确定了预测非线性临界耦合(NCC)条件下ACE极限的决定性因子M。利用这一框架,我们制造了周期性极化的铌酸锂微谐振器,并解决了色散-耗散抑制,以接近NCC条件。在毫瓦级的泵功率下,我们实现了创纪录的61.3%的ACE,随着M因子的增加,效率可能会更高。这些结果为高效非线性光学器件提供了一个通用的范例,为跨越经典和量子光子应用的进步提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward ultimate-efficiency frequency conversion in nonlinear optical microresonators

Toward ultimate-efficiency frequency conversion in nonlinear optical microresonators
Integrated nonlinear photonics has emerged as a transformative platform, enabling nanoscale nonlinear optical processes with substantial implications. Achieving efficient nonlinear frequency conversion in microresonators is paramount to fully unlocking this potential, yet the absolute conversion efficiency (ACE) remains fundamentally constrained by dissipative losses and intrinsic nonlinear effects. In this work, we establish a unified framework for second harmonic generation in microresonators, identifying a decisive factor M that predicts the ACE limit under the nonlinear critical coupling (NCC) condition. Using this framework, we fabricate periodically poled lithium niobate microresonators and address the dispersive-dissipative suppression to approach the NCC condition. We achieve a record-high ACE of 61.3% with milliwatt-level pump powers toward the ultimate efficiency, with the potential for higher efficiency as the M factor increases. These results provide a versatile paradigm for high-efficiency nonlinear optical devices, offering opportunities for advancements across classical and quantum photonic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信