{"title":"通信约束下的分布高斯混合PHD滤波","authors":"Shiraz Khan, Yi-Chieh Sun, Inseok Hwang","doi":"10.1049/wss2.70006","DOIUrl":null,"url":null,"abstract":"<p>The Gaussian mixture probability hypothesis density (GM-PHD) filter is an almost exact closed-form approximation to the Bayes-optimal multi-target tracking algorithm. Due to its optimality guarantees and ease of implementation, it has been studied extensively in the literature. However, the challenges involved in implementing the GM-PHD filter efficiently in a distributed (multi-sensor) setting have received little attention. The existing solutions for distributed PHD filtering either have a high computational and communication cost, making them infeasible for wireless sensor networks with limited communication bandwidths, and/or are unable to guarantee the asymptotic convergence of the algorithm to an optimal solution. In this paper, we develop a distributed GM-PHD filtering recursion that uses a probabilistic communication rule to limit the communication bandwidth of the algorithm, while ensuring asymptotic convergence of the algorithm. The proposed algorithm uses weighted average consensus of Gaussian mixtures (GMs) to lower (and asymptotically minimise) the Cauchy–Schwarz divergences between the sensors' local estimates. In addition, the proposed probabilistic communication rule is able to avoid the issue of false positives, which has previously been noted to impact the filtering performance of distributed multi-target tracking. Through numerical simulations, it is demonstrated that our proposed method is an effective solution for distributed multi-target tracking in resource-constrained sensor networks.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70006","citationCount":"0","resultStr":"{\"title\":\"Distributed Gaussian Mixture PHD Filtering Under Communication Constraints\",\"authors\":\"Shiraz Khan, Yi-Chieh Sun, Inseok Hwang\",\"doi\":\"10.1049/wss2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Gaussian mixture probability hypothesis density (GM-PHD) filter is an almost exact closed-form approximation to the Bayes-optimal multi-target tracking algorithm. Due to its optimality guarantees and ease of implementation, it has been studied extensively in the literature. However, the challenges involved in implementing the GM-PHD filter efficiently in a distributed (multi-sensor) setting have received little attention. The existing solutions for distributed PHD filtering either have a high computational and communication cost, making them infeasible for wireless sensor networks with limited communication bandwidths, and/or are unable to guarantee the asymptotic convergence of the algorithm to an optimal solution. In this paper, we develop a distributed GM-PHD filtering recursion that uses a probabilistic communication rule to limit the communication bandwidth of the algorithm, while ensuring asymptotic convergence of the algorithm. The proposed algorithm uses weighted average consensus of Gaussian mixtures (GMs) to lower (and asymptotically minimise) the Cauchy–Schwarz divergences between the sensors' local estimates. In addition, the proposed probabilistic communication rule is able to avoid the issue of false positives, which has previously been noted to impact the filtering performance of distributed multi-target tracking. Through numerical simulations, it is demonstrated that our proposed method is an effective solution for distributed multi-target tracking in resource-constrained sensor networks.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Distributed Gaussian Mixture PHD Filtering Under Communication Constraints
The Gaussian mixture probability hypothesis density (GM-PHD) filter is an almost exact closed-form approximation to the Bayes-optimal multi-target tracking algorithm. Due to its optimality guarantees and ease of implementation, it has been studied extensively in the literature. However, the challenges involved in implementing the GM-PHD filter efficiently in a distributed (multi-sensor) setting have received little attention. The existing solutions for distributed PHD filtering either have a high computational and communication cost, making them infeasible for wireless sensor networks with limited communication bandwidths, and/or are unable to guarantee the asymptotic convergence of the algorithm to an optimal solution. In this paper, we develop a distributed GM-PHD filtering recursion that uses a probabilistic communication rule to limit the communication bandwidth of the algorithm, while ensuring asymptotic convergence of the algorithm. The proposed algorithm uses weighted average consensus of Gaussian mixtures (GMs) to lower (and asymptotically minimise) the Cauchy–Schwarz divergences between the sensors' local estimates. In addition, the proposed probabilistic communication rule is able to avoid the issue of false positives, which has previously been noted to impact the filtering performance of distributed multi-target tracking. Through numerical simulations, it is demonstrated that our proposed method is an effective solution for distributed multi-target tracking in resource-constrained sensor networks.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.