Brett M Seymoure, Rachel Buxton, Jeremy M White, Carlos R Linares, Kurt Fristrup, Kevin Crooks, George Wittemyer, Lisa Angeloni
{"title":"全球人造光掩盖了动物生物学上重要的光周期","authors":"Brett M Seymoure, Rachel Buxton, Jeremy M White, Carlos R Linares, Kurt Fristrup, Kevin Crooks, George Wittemyer, Lisa Angeloni","doi":"10.1002/fee.2832","DOIUrl":null,"url":null,"abstract":"<p>We document the importance of low-light conditions in 136 animal species and then translate the new world atlas of skyglow, which reports artificial night sky brightness, into estimates of anthropogenic illuminance (that is, artificial light reaching Earth's surface). Quantifying habitat illuminance from skyglow facilitates understanding of the disruption of natural light cycles, such as new moon conditions, which are critical to animal ecology. We corroborated this transformation of sky brightness by comparing concurrent field measurements of skyglow and illuminance. We then quantified global artificial illuminance caused by skyglow, finding that skyglow artificially doubled illuminance of new moon conditions—a critical phase for biological processes, such as foraging, courtship, and mating—for 22.9% of the Earth's terrestrial surface, 51.0% of Key Biodiversity Areas, 77.1% of Global Protected Areas, and ~20% of highly diverse areas for mammals, birds, and amphibians. We provide summaries of artificial illuminance at 750-m pixel resolution for each protected area to aid land managers and guide policy in reducing skyglow in areas that may yield the greatest benefits for conserving animal biodiversity.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"23 4","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2832","citationCount":"0","resultStr":"{\"title\":\"Global artificial light masks biologically important light cycles of animals\",\"authors\":\"Brett M Seymoure, Rachel Buxton, Jeremy M White, Carlos R Linares, Kurt Fristrup, Kevin Crooks, George Wittemyer, Lisa Angeloni\",\"doi\":\"10.1002/fee.2832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We document the importance of low-light conditions in 136 animal species and then translate the new world atlas of skyglow, which reports artificial night sky brightness, into estimates of anthropogenic illuminance (that is, artificial light reaching Earth's surface). Quantifying habitat illuminance from skyglow facilitates understanding of the disruption of natural light cycles, such as new moon conditions, which are critical to animal ecology. We corroborated this transformation of sky brightness by comparing concurrent field measurements of skyglow and illuminance. We then quantified global artificial illuminance caused by skyglow, finding that skyglow artificially doubled illuminance of new moon conditions—a critical phase for biological processes, such as foraging, courtship, and mating—for 22.9% of the Earth's terrestrial surface, 51.0% of Key Biodiversity Areas, 77.1% of Global Protected Areas, and ~20% of highly diverse areas for mammals, birds, and amphibians. We provide summaries of artificial illuminance at 750-m pixel resolution for each protected area to aid land managers and guide policy in reducing skyglow in areas that may yield the greatest benefits for conserving animal biodiversity.</p>\",\"PeriodicalId\":171,\"journal\":{\"name\":\"Frontiers in Ecology and the Environment\",\"volume\":\"23 4\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Ecology and the Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fee.2832\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and the Environment","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fee.2832","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Global artificial light masks biologically important light cycles of animals
We document the importance of low-light conditions in 136 animal species and then translate the new world atlas of skyglow, which reports artificial night sky brightness, into estimates of anthropogenic illuminance (that is, artificial light reaching Earth's surface). Quantifying habitat illuminance from skyglow facilitates understanding of the disruption of natural light cycles, such as new moon conditions, which are critical to animal ecology. We corroborated this transformation of sky brightness by comparing concurrent field measurements of skyglow and illuminance. We then quantified global artificial illuminance caused by skyglow, finding that skyglow artificially doubled illuminance of new moon conditions—a critical phase for biological processes, such as foraging, courtship, and mating—for 22.9% of the Earth's terrestrial surface, 51.0% of Key Biodiversity Areas, 77.1% of Global Protected Areas, and ~20% of highly diverse areas for mammals, birds, and amphibians. We provide summaries of artificial illuminance at 750-m pixel resolution for each protected area to aid land managers and guide policy in reducing skyglow in areas that may yield the greatest benefits for conserving animal biodiversity.
期刊介绍:
Frontiers in Ecology and the Environment is a publication by the Ecological Society of America that focuses on the significance of ecology and environmental science in various aspects of research and problem-solving. The journal covers topics such as biodiversity conservation, ecosystem preservation, natural resource management, public policy, and other related areas.
The publication features a range of content, including peer-reviewed articles, editorials, commentaries, letters, and occasional special issues and topical series. It releases ten issues per year, excluding January and July. ESA members receive both print and electronic copies of the journal, while institutional subscriptions are also available.
Frontiers in Ecology and the Environment is highly regarded in the field, as indicated by its ranking in the 2021 Journal Citation Reports by Clarivate Analytics. The journal is ranked 4th out of 174 in ecology journals and 11th out of 279 in environmental sciences journals. Its impact factor for 2021 is reported as 13.789, which further demonstrates its influence and importance in the scientific community.