交错三角形,舒伯特谜题和图形着色

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Christian Gaetz, Yibo Gao
{"title":"交错三角形,舒伯特谜题和图形着色","authors":"Christian Gaetz,&nbsp;Yibo Gao","doi":"10.1007/s00220-025-05312-7","DOIUrl":null,"url":null,"abstract":"<div><p>We show that <i>interlacing triangular arrays</i>, introduced by Aggarwal–Borodin–Wheeler to study certain probability measures, can be used to compute structure constants for multiplying Schubert classes in the <i>K</i>-theory of Grassmannians, in the cohomology of their cotangent bundles, and in the cohomology of partial flag varieties. Our results are achieved by establishing a splitting lemma, allowing for interlacing triangular arrays of high rank to be decomposed into arrays of lower rank, and by constructing a bijection between interlacing triangular arrays of rank 3 with certain proper vertex colorings of the triangular grid graph that factors through generalizations of Knutson–Tao puzzles. Along the way, we prove one enumerative conjecture of Aggarwal–Borodin–Wheeler and disprove another.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlacing Triangles, Schubert Puzzles, and Graph Colorings\",\"authors\":\"Christian Gaetz,&nbsp;Yibo Gao\",\"doi\":\"10.1007/s00220-025-05312-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that <i>interlacing triangular arrays</i>, introduced by Aggarwal–Borodin–Wheeler to study certain probability measures, can be used to compute structure constants for multiplying Schubert classes in the <i>K</i>-theory of Grassmannians, in the cohomology of their cotangent bundles, and in the cohomology of partial flag varieties. Our results are achieved by establishing a splitting lemma, allowing for interlacing triangular arrays of high rank to be decomposed into arrays of lower rank, and by constructing a bijection between interlacing triangular arrays of rank 3 with certain proper vertex colorings of the triangular grid graph that factors through generalizations of Knutson–Tao puzzles. Along the way, we prove one enumerative conjecture of Aggarwal–Borodin–Wheeler and disprove another.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05312-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05312-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了aggarwalborodin - wheeler为研究某些概率测度而引入的交错三角形阵列,可以用于计算Grassmannians k理论中Schubert类相乘的结构常数,在它们的余切束的上同调中,以及在部分标志变体的上同调中。我们的结果是通过建立一个分裂引理来实现的,该引理允许高秩的交错三角形数组被分解为低秩的数组,并通过构造一个具有三角形网格图的某些适当顶点着色的秩3的交错三角形数组之间的双射来实现的,该双射通过Knutson-Tao谜题的推广。在此过程中,我们证明了Aggarwal-Borodin-Wheeler的一个枚举猜想,并反驳了另一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interlacing Triangles, Schubert Puzzles, and Graph Colorings

We show that interlacing triangular arrays, introduced by Aggarwal–Borodin–Wheeler to study certain probability measures, can be used to compute structure constants for multiplying Schubert classes in the K-theory of Grassmannians, in the cohomology of their cotangent bundles, and in the cohomology of partial flag varieties. Our results are achieved by establishing a splitting lemma, allowing for interlacing triangular arrays of high rank to be decomposed into arrays of lower rank, and by constructing a bijection between interlacing triangular arrays of rank 3 with certain proper vertex colorings of the triangular grid graph that factors through generalizations of Knutson–Tao puzzles. Along the way, we prove one enumerative conjecture of Aggarwal–Borodin–Wheeler and disprove another.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信