阿尔茨海默病人脑组织中tau蛋白相互作用组在T217位点磷酸化

IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY
Tomas Kavanagh, Manon Thierry, Kaleah Balcomb, Jackeline Ponce, Evgeny Kanshin, Alexander Tapia-Sealey, Glenda Halliday, Beatrix Ueberheide, Thomas Wisniewski, Eleanor Drummond
{"title":"阿尔茨海默病人脑组织中tau蛋白相互作用组在T217位点磷酸化","authors":"Tomas Kavanagh,&nbsp;Manon Thierry,&nbsp;Kaleah Balcomb,&nbsp;Jackeline Ponce,&nbsp;Evgeny Kanshin,&nbsp;Alexander Tapia-Sealey,&nbsp;Glenda Halliday,&nbsp;Beatrix Ueberheide,&nbsp;Thomas Wisniewski,&nbsp;Eleanor Drummond","doi":"10.1007/s00401-025-02881-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hyperphosphorylated tau (pTau) in Alzheimer’s disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated. The emerging studies suggest that phosphorylation of specific residues may alter the role of tau. The role of specific pTau species can be explored through protein interactome studies. The aim of this study was to analyse the interactome of tau phosphorylated at T217 (pT217), which biomarker studies suggest is one of the earliest accumulating tau species in AD. pT217 interactors were identified in fresh-frozen human brain tissue from 10 cases of advanced AD using affinity purification-mass spectrometry. The cases included a balanced cohort of <i>APOE</i> ε3/ε3 and ε4/ε4 genotypes (<i>n</i> = 5 each) to explore how apolipoprotein E altered phosphorylated tau interactions. The results were compared to our previous interactome dataset that profiled the interactors of PHF1-enriched tau to determine if individual pTau species have different interactomes. 23 proteins were identified as <i>bona fide</i> pT217 interactors, including known pTau interactor SQSTM1. pT217 enriched tau was phosphorylated at fewer residues compared to PHF1-enriched tau, suggesting an earlier stage of pathology development. Notable pT217 interactors included five subunits of the CTLH E3 ubiquitin ligase (WDR26, ARMC8, GID8, RANBP9, MAEA), which has not previously been linked to AD. In <i>APOE</i> ε3/ε3 cases pT217 significantly interacted with 46 proteins compared to 28 in <i>APOE</i> ε4/ε4 cases, but these proteins were significantly overlapped. CTLH E3 ubiquitin ligase subunits significantly interacted with phosphorylated tau in both <i>APOE</i> genotypes. pT217 interactions with SQSTM1, WDR26 and RANBP9 were validated using co-immunoprecipitation and immunofluorescent microscopy of post-mortem human brain tissue, which showed colocalisation of both protein interactors with tau pathology. Our results report the interactome of pT217 in human Alzheimer’s disease brain tissue for the first time and highlight the CTLH E3 ubiquitin ligase complex as a significant novel interactor of pT217 tau.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"149 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-025-02881-8.pdf","citationCount":"0","resultStr":"{\"title\":\"The interactome of tau phosphorylated at T217 in Alzheimer’s disease human brain tissue\",\"authors\":\"Tomas Kavanagh,&nbsp;Manon Thierry,&nbsp;Kaleah Balcomb,&nbsp;Jackeline Ponce,&nbsp;Evgeny Kanshin,&nbsp;Alexander Tapia-Sealey,&nbsp;Glenda Halliday,&nbsp;Beatrix Ueberheide,&nbsp;Thomas Wisniewski,&nbsp;Eleanor Drummond\",\"doi\":\"10.1007/s00401-025-02881-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hyperphosphorylated tau (pTau) in Alzheimer’s disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated. The emerging studies suggest that phosphorylation of specific residues may alter the role of tau. The role of specific pTau species can be explored through protein interactome studies. The aim of this study was to analyse the interactome of tau phosphorylated at T217 (pT217), which biomarker studies suggest is one of the earliest accumulating tau species in AD. pT217 interactors were identified in fresh-frozen human brain tissue from 10 cases of advanced AD using affinity purification-mass spectrometry. The cases included a balanced cohort of <i>APOE</i> ε3/ε3 and ε4/ε4 genotypes (<i>n</i> = 5 each) to explore how apolipoprotein E altered phosphorylated tau interactions. The results were compared to our previous interactome dataset that profiled the interactors of PHF1-enriched tau to determine if individual pTau species have different interactomes. 23 proteins were identified as <i>bona fide</i> pT217 interactors, including known pTau interactor SQSTM1. pT217 enriched tau was phosphorylated at fewer residues compared to PHF1-enriched tau, suggesting an earlier stage of pathology development. Notable pT217 interactors included five subunits of the CTLH E3 ubiquitin ligase (WDR26, ARMC8, GID8, RANBP9, MAEA), which has not previously been linked to AD. In <i>APOE</i> ε3/ε3 cases pT217 significantly interacted with 46 proteins compared to 28 in <i>APOE</i> ε4/ε4 cases, but these proteins were significantly overlapped. CTLH E3 ubiquitin ligase subunits significantly interacted with phosphorylated tau in both <i>APOE</i> genotypes. pT217 interactions with SQSTM1, WDR26 and RANBP9 were validated using co-immunoprecipitation and immunofluorescent microscopy of post-mortem human brain tissue, which showed colocalisation of both protein interactors with tau pathology. Our results report the interactome of pT217 in human Alzheimer’s disease brain tissue for the first time and highlight the CTLH E3 ubiquitin ligase complex as a significant novel interactor of pT217 tau.</p></div>\",\"PeriodicalId\":7012,\"journal\":{\"name\":\"Acta Neuropathologica\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00401-025-02881-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00401-025-02881-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-025-02881-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)脑组织中过度磷酸化的tau (pTau)是多种tau物种的复杂混合物,这些tau物种被不同程度地磷酸化。新出现的研究表明,特定残基的磷酸化可能改变tau的作用。特定pTau物种的作用可以通过蛋白质相互作用组研究来探索。本研究的目的是分析tau蛋白在T217位点磷酸化的相互作用组(pT217),生物标志物研究表明pT217是AD中最早积累的tau物种之一。采用亲和纯化-质谱法在10例晚期AD患者的新鲜冷冻脑组织中鉴定出pT217相互作用物。这些病例包括APOE ε3/ε3和ε4/ε4基因型(各n = 5)的平衡队列,以探索载脂蛋白E如何改变磷酸化tau蛋白的相互作用。结果与我们之前的相互作用组数据集进行了比较,该数据集描述了富含phf1的tau的相互作用体,以确定单个pTau物种是否具有不同的相互作用组。23个蛋白被鉴定为真正的pT217相互作用物,包括已知的pTau相互作用物SQSTM1。与phf1富集的tau蛋白相比,pT217富集的tau蛋白磷酸化的残基更少,表明其病理发展阶段更早。值得注意的pT217相互作用物包括CTLH E3泛素连接酶的5个亚基(WDR26, ARMC8, GID8, RANBP9, MAEA),这些亚基之前未被发现与AD相关。在APOE ε3/ε3病例中,pT217与46个蛋白显著相互作用,而在APOE ε4/ε4病例中,pT217与28个蛋白显著相互作用,但这些蛋白显著重叠。在两种APOE基因型中,CTLH E3泛素连接酶亚基与磷酸化的tau蛋白显著相互作用。pT217与SQSTM1、WDR26和RANBP9的相互作用通过死后人脑组织的免疫共沉淀和免疫荧光显微镜进行了验证,结果显示这两种蛋白相互作用物与tau病理共定位。我们的研究结果首次报道了pT217在人类阿尔茨海默病脑组织中的相互作用,并强调了CTLH E3泛素连接酶复合物是pT217 tau的重要新相互作用物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interactome of tau phosphorylated at T217 in Alzheimer’s disease human brain tissue

Hyperphosphorylated tau (pTau) in Alzheimer’s disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated. The emerging studies suggest that phosphorylation of specific residues may alter the role of tau. The role of specific pTau species can be explored through protein interactome studies. The aim of this study was to analyse the interactome of tau phosphorylated at T217 (pT217), which biomarker studies suggest is one of the earliest accumulating tau species in AD. pT217 interactors were identified in fresh-frozen human brain tissue from 10 cases of advanced AD using affinity purification-mass spectrometry. The cases included a balanced cohort of APOE ε3/ε3 and ε4/ε4 genotypes (n = 5 each) to explore how apolipoprotein E altered phosphorylated tau interactions. The results were compared to our previous interactome dataset that profiled the interactors of PHF1-enriched tau to determine if individual pTau species have different interactomes. 23 proteins were identified as bona fide pT217 interactors, including known pTau interactor SQSTM1. pT217 enriched tau was phosphorylated at fewer residues compared to PHF1-enriched tau, suggesting an earlier stage of pathology development. Notable pT217 interactors included five subunits of the CTLH E3 ubiquitin ligase (WDR26, ARMC8, GID8, RANBP9, MAEA), which has not previously been linked to AD. In APOE ε3/ε3 cases pT217 significantly interacted with 46 proteins compared to 28 in APOE ε4/ε4 cases, but these proteins were significantly overlapped. CTLH E3 ubiquitin ligase subunits significantly interacted with phosphorylated tau in both APOE genotypes. pT217 interactions with SQSTM1, WDR26 and RANBP9 were validated using co-immunoprecipitation and immunofluorescent microscopy of post-mortem human brain tissue, which showed colocalisation of both protein interactors with tau pathology. Our results report the interactome of pT217 in human Alzheimer’s disease brain tissue for the first time and highlight the CTLH E3 ubiquitin ligase complex as a significant novel interactor of pT217 tau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropathologica
Acta Neuropathologica 医学-病理学
CiteScore
23.70
自引率
3.90%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信