玻璃粉改性提高海水混合钢纤维增强砂浆的显微组织性能和抗氯离子性能

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xiaowen Zhang, Jian-Xin Lu, Chi Sun Poon
{"title":"玻璃粉改性提高海水混合钢纤维增强砂浆的显微组织性能和抗氯离子性能","authors":"Xiaowen Zhang,&nbsp;Jian-Xin Lu,&nbsp;Chi Sun Poon","doi":"10.1617/s11527-025-02669-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates how glass powder modification enhances steel fiber-reinforced mortar (SFRM) performance in marine environments, with focus on microstructural properties and chloride resistance. We developed a customized image segmentation technique that combines K-means clustering with concentric strip analysis to characterize the fiber–matrix interface. Results showed that replacing 25% of cement with glass powder reduced the interfacial transition zone thickness from 45 to 35 μm and decreased surface porosity from 95 to 85% after 28-d curing. The pozzolanic reactions generated additional C–S–H phases and modified phase assemblages, enhancing chloride resistance and increasing interfacial microhardness by 183.3 MPa. During wet–dry testing, glass powder-modified specimens showed 15–25% lower chloride concentrations and delayed corrosion initiation by 3–6 cycles in seawater-mixed specimens. This work provides both a testing methodology for fiber–matrix interface analysis and practical guidelines for improving SFRM durability in marine construction through waste glass utilization.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02669-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing microstructural properties and chloride resistance of seawater-mixed steel fiber-reinforced mortars through glass powder modification\",\"authors\":\"Xiaowen Zhang,&nbsp;Jian-Xin Lu,&nbsp;Chi Sun Poon\",\"doi\":\"10.1617/s11527-025-02669-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates how glass powder modification enhances steel fiber-reinforced mortar (SFRM) performance in marine environments, with focus on microstructural properties and chloride resistance. We developed a customized image segmentation technique that combines K-means clustering with concentric strip analysis to characterize the fiber–matrix interface. Results showed that replacing 25% of cement with glass powder reduced the interfacial transition zone thickness from 45 to 35 μm and decreased surface porosity from 95 to 85% after 28-d curing. The pozzolanic reactions generated additional C–S–H phases and modified phase assemblages, enhancing chloride resistance and increasing interfacial microhardness by 183.3 MPa. During wet–dry testing, glass powder-modified specimens showed 15–25% lower chloride concentrations and delayed corrosion initiation by 3–6 cycles in seawater-mixed specimens. This work provides both a testing methodology for fiber–matrix interface analysis and practical guidelines for improving SFRM durability in marine construction through waste glass utilization.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02669-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02669-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02669-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了玻璃粉改性如何提高钢纤维增强砂浆(SFRM)在海洋环境中的性能,重点是微观结构性能和耐氯性。我们开发了一种定制的图像分割技术,该技术结合了k均值聚类和同心条带分析来表征纤维-矩阵界面。结果表明,用玻璃粉代替25%的水泥,固化28 d后,界面过渡区厚度从45 μm降低到35 μm,表面孔隙率从95%降低到85%。火山灰反应产生了额外的C-S-H相和修饰相组合,增强了耐氯性,界面显微硬度提高了183.3 MPa。在干湿试验中,玻璃粉改性的样品在海水混合样品中显示出15-25%的氯浓度降低,并且延迟了3-6个循环的腐蚀起始。这项工作为纤维-基质界面分析提供了一种测试方法,并为通过利用废玻璃提高海洋建筑中SFRM的耐久性提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing microstructural properties and chloride resistance of seawater-mixed steel fiber-reinforced mortars through glass powder modification

This study investigates how glass powder modification enhances steel fiber-reinforced mortar (SFRM) performance in marine environments, with focus on microstructural properties and chloride resistance. We developed a customized image segmentation technique that combines K-means clustering with concentric strip analysis to characterize the fiber–matrix interface. Results showed that replacing 25% of cement with glass powder reduced the interfacial transition zone thickness from 45 to 35 μm and decreased surface porosity from 95 to 85% after 28-d curing. The pozzolanic reactions generated additional C–S–H phases and modified phase assemblages, enhancing chloride resistance and increasing interfacial microhardness by 183.3 MPa. During wet–dry testing, glass powder-modified specimens showed 15–25% lower chloride concentrations and delayed corrosion initiation by 3–6 cycles in seawater-mixed specimens. This work provides both a testing methodology for fiber–matrix interface analysis and practical guidelines for improving SFRM durability in marine construction through waste glass utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信