用于储能的高效锌锰钙钛矿氧化物的制备

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Meznah M. Alanazi, Shaimaa A.M. Abdelmohsen, Taghreed Muhammad Abdu Bahlool, Tamoor Ahmad, Muhammad Imran, Muhammad Abdullah
{"title":"用于储能的高效锌锰钙钛矿氧化物的制备","authors":"Meznah M. Alanazi,&nbsp;Shaimaa A.M. Abdelmohsen,&nbsp;Taghreed Muhammad Abdu Bahlool,&nbsp;Tamoor Ahmad,&nbsp;Muhammad Imran,&nbsp;Muhammad Abdullah","doi":"10.1007/s00339-025-08473-3","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers are exploring alternative energy resources due to decline of fossil fuels and the ensuing challenges they pose to both humanity and environment. Nonetheless, supercapacitors (SCs) represent promising energy storage approaches owed to their effective mechanisms, enhanced power delivery and outstanding cyclic lifespan. Transition metal oxides (TMOs) have been recognized to be exceptional electrode substances for high-performance supercapacitors owing to impressive conductivity and numerous active species. Still, the material’s lower energy density and insufficient rate performance pose limitations. In this work, the ZnO@ZnMnO<sub>3</sub> composite was prepared using a simple hydrothermal route. This unique ZnO@ZnMnO<sub>3</sub> composite exhibits specific capacitance (C<sub>sp</sub>) of 1132 F g<sup>− 1</sup> at 1 A g<sup>− 1</sup>, showcasing its exceptional rate performance. It also displays noteworthy energy density (E<sub>d</sub>) of 52 W h kg<sup>− 1</sup> when operated at power density (P<sub>d</sub>) of 289 W kg<sup>− 1</sup>. In addition, synthesized material exhibits lower impedance (R<sub>ct</sub> = 0.16) with extraordinary stability of 50 h. This effort shows valuable insights into the production of TMOs nanoparticles that exhibit outstanding performance in supercapacitor applications.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of highly efficient zinc manganese perovskite oxide for energy storage application\",\"authors\":\"Meznah M. Alanazi,&nbsp;Shaimaa A.M. Abdelmohsen,&nbsp;Taghreed Muhammad Abdu Bahlool,&nbsp;Tamoor Ahmad,&nbsp;Muhammad Imran,&nbsp;Muhammad Abdullah\",\"doi\":\"10.1007/s00339-025-08473-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Researchers are exploring alternative energy resources due to decline of fossil fuels and the ensuing challenges they pose to both humanity and environment. Nonetheless, supercapacitors (SCs) represent promising energy storage approaches owed to their effective mechanisms, enhanced power delivery and outstanding cyclic lifespan. Transition metal oxides (TMOs) have been recognized to be exceptional electrode substances for high-performance supercapacitors owing to impressive conductivity and numerous active species. Still, the material’s lower energy density and insufficient rate performance pose limitations. In this work, the ZnO@ZnMnO<sub>3</sub> composite was prepared using a simple hydrothermal route. This unique ZnO@ZnMnO<sub>3</sub> composite exhibits specific capacitance (C<sub>sp</sub>) of 1132 F g<sup>− 1</sup> at 1 A g<sup>− 1</sup>, showcasing its exceptional rate performance. It also displays noteworthy energy density (E<sub>d</sub>) of 52 W h kg<sup>− 1</sup> when operated at power density (P<sub>d</sub>) of 289 W kg<sup>− 1</sup>. In addition, synthesized material exhibits lower impedance (R<sub>ct</sub> = 0.16) with extraordinary stability of 50 h. This effort shows valuable insights into the production of TMOs nanoparticles that exhibit outstanding performance in supercapacitor applications.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08473-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08473-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于化石燃料的减少以及随之而来的对人类和环境的挑战,研究人员正在探索替代能源。尽管如此,超级电容器(SCs)由于其有效的机制,增强的功率传输和出色的循环寿命,代表了有前途的能量存储方法。过渡金属氧化物(TMOs)已被认为是高性能超级电容器的特殊电极物质,因为它具有令人印象深刻的导电性和许多活性物质。然而,这种材料较低的能量密度和不充分的速率性能构成了限制。在这项工作中,利用简单的水热方法制备了ZnO@ZnMnO3复合材料。这种独特的ZnO@ZnMnO3复合材料在1 A g−1时的比电容(Csp)为1132 F g−1,展示了其卓越的速率性能。当功率密度(Pd)为289 W kg−1时,其能量密度(Ed)为52 W h kg−1。此外,合成材料表现出更低的阻抗(Rct = 0.16)和50小时的非凡稳定性。这一努力为在超级电容器应用中表现出卓越性能的TMOs纳米颗粒的生产提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of highly efficient zinc manganese perovskite oxide for energy storage application

Researchers are exploring alternative energy resources due to decline of fossil fuels and the ensuing challenges they pose to both humanity and environment. Nonetheless, supercapacitors (SCs) represent promising energy storage approaches owed to their effective mechanisms, enhanced power delivery and outstanding cyclic lifespan. Transition metal oxides (TMOs) have been recognized to be exceptional electrode substances for high-performance supercapacitors owing to impressive conductivity and numerous active species. Still, the material’s lower energy density and insufficient rate performance pose limitations. In this work, the ZnO@ZnMnO3 composite was prepared using a simple hydrothermal route. This unique ZnO@ZnMnO3 composite exhibits specific capacitance (Csp) of 1132 F g− 1 at 1 A g− 1, showcasing its exceptional rate performance. It also displays noteworthy energy density (Ed) of 52 W h kg− 1 when operated at power density (Pd) of 289 W kg− 1. In addition, synthesized material exhibits lower impedance (Rct = 0.16) with extraordinary stability of 50 h. This effort shows valuable insights into the production of TMOs nanoparticles that exhibit outstanding performance in supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信