{"title":"利用量子SWAP引擎实验验证热力学不确定性关系","authors":"Krishna Shende, Arvind, Kavita Dorai","doi":"10.1140/epjp/s13360-025-06276-2","DOIUrl":null,"url":null,"abstract":"<div><p>Thermodynamic uncertainty relations (TURs) arise from the bounds on fluctuations of thermodynamic quantities during a non-equilibrium process, and they impose constraints on the corresponding process. We experimentally implement a quantum SWAP engine on a nuclear magnetic resonance setup and demonstrate that a Gibbs thermal state can be prepared in two different ways, either directly from a thermal equilibrium state or by first initializing the system in a pseudopure state. We show that the quantum SWAP engine can work both as a heat engine and as a refrigerator. Starting from a pseudopure state, we construct the SWAP engine and investigate the validity of two different TURs, namely, a generalized TUR and a tighter, more specific TUR. Our results validate that the generalized TUR is obeyed in all the working regimes of the SWAP engine, while the tighter TUR is violated in certain regimes.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a quantum SWAP engine to experimentally validate thermodynamic uncertainty relations\",\"authors\":\"Krishna Shende, Arvind, Kavita Dorai\",\"doi\":\"10.1140/epjp/s13360-025-06276-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermodynamic uncertainty relations (TURs) arise from the bounds on fluctuations of thermodynamic quantities during a non-equilibrium process, and they impose constraints on the corresponding process. We experimentally implement a quantum SWAP engine on a nuclear magnetic resonance setup and demonstrate that a Gibbs thermal state can be prepared in two different ways, either directly from a thermal equilibrium state or by first initializing the system in a pseudopure state. We show that the quantum SWAP engine can work both as a heat engine and as a refrigerator. Starting from a pseudopure state, we construct the SWAP engine and investigate the validity of two different TURs, namely, a generalized TUR and a tighter, more specific TUR. Our results validate that the generalized TUR is obeyed in all the working regimes of the SWAP engine, while the tighter TUR is violated in certain regimes.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06276-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06276-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Using a quantum SWAP engine to experimentally validate thermodynamic uncertainty relations
Thermodynamic uncertainty relations (TURs) arise from the bounds on fluctuations of thermodynamic quantities during a non-equilibrium process, and they impose constraints on the corresponding process. We experimentally implement a quantum SWAP engine on a nuclear magnetic resonance setup and demonstrate that a Gibbs thermal state can be prepared in two different ways, either directly from a thermal equilibrium state or by first initializing the system in a pseudopure state. We show that the quantum SWAP engine can work both as a heat engine and as a refrigerator. Starting from a pseudopure state, we construct the SWAP engine and investigate the validity of two different TURs, namely, a generalized TUR and a tighter, more specific TUR. Our results validate that the generalized TUR is obeyed in all the working regimes of the SWAP engine, while the tighter TUR is violated in certain regimes.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.